

What’s New in
Omnis Studio 10.2

Rev 31315

Omnis Software
November 2021

54-112021-01

The software this document describes is furnished under a license agreement. The software may be used or copied
only in accordance with the terms of the agreement. Names of persons, corporations, or products used in the tutorials
and examples of this manual are fictitious. No part of this publication may be reproduced, transmitted, stored in a
retrieval system or translated into any language in any form by any means without the written permission of Omnis
Software.

© Omnis Software, and its licensors 2021. All rights reserved.
Portions © Copyright Microsoft Corporation.
Regular expressions Copyright (c) 1986,1993,1995 University of Toronto.

© 1999-2021 The Apache Software Foundation. All rights reserved.
This product includes software developed by the Apache Software Foundation (http://www.apache.org/).
Specifically, this product uses Json-smart published under Apache License 2.0
(http://www.apache.org/licenses/LICENSE-2.0)

© 2001-2021 Python Software Foundation; All Rights Reserved.

The iOS application wrapper uses UICKeyChainStore created by http://kishikawakatsumi.com and governed by the MIT
license.

Omnis® and Omnis Studio® are registered trademarks of Omnis Software.

Microsoft, MS, MS-DOS, Visual Basic, Windows, Windows Vista, Windows Mobile, Win32, Win32s are registered
trademarks, and Windows NT, Visual C++ are trademarks of Microsoft Corporation in the US and other countries.

Apple, the Apple logo, Mac OS, Macintosh, iPhone, and iPod touch are registered trademarks and iPad is a trademark
of Apple, Inc.

IBM, DB2, and INFORMIX are registered trademarks of International Business Machines Corporation.

ICU is Copyright © 1995-2021 International Business Machines Corporation and others.

UNIX is a registered trademark in the US and other countries exclusively licensed by X/Open Company Ltd.

Portions Copyright (c) 1996-2021, The PostgreSQL Global Development Group
Portions Copyright (c) 1994, The Regents of the University of California

Oracle, Java, and MySQL are registered trademarks of Oracle Corporation and/or its affiliates

SYBASE, Net-Library, Open Client, DB-Library and CT-Library are registered trademarks of Sybase Inc.

Acrobat is a registered trademark of Adobe Systems, Inc.

CodeWarrior is a trademark of Metrowerks, Inc.

This software is based in part on ChartDirector, copyright Advanced Software Engineering (www.advsofteng.com).

This software is based in part on the work of the Independent JPEG Group.
This software is based in part of the work of the FreeType Team.

Other products mentioned are trademarks or registered trademarks of their corporations.

http://kishikawakatsumi.com/

 Table of Contents

 3

Table of Contents
ABOUT THIS MANUAL ... 6

SOFTWARE SUPPORT, COMPATIBILITY AND CONVERSION ISSUES 7

WHAT’S NEW IN OMNIS STUDIO 10.2 REV 31315 12

APPLE M1 & MACOS MONTEREY SUPPORT .. 12
THE OMNIS ENVIRONMENT ... 13
JAVASCRIPT REMOTE FORMS .. 14
REPORT PROGRAMMING .. 14
FUNCTIONS .. 14

WHAT’S NEW IN OMNIS STUDIO 10.2 REV 30204 15

LIST PROGRAMMING ... 15
WINDOW PROGRAMMING .. 15
OMNIS DATA BRIDGE.. 15
ORACLE DAM .. 16

WHAT’S NEW IN OMNIS STUDIO 10.2 REV 29818 17

JAVASCRIPT COMPONENTS .. 17
JAVASCRIPT REMOTE FORMS .. 17
OMNIS ENVIRONMENT .. 17
LIBRARIES .. 18
WINDOW COMPONENTS ... 18

WHAT’S NEW IN OMNIS STUDIO 10.2 REV 29538 19

JAVASCRIPT COMPONENTS .. 19
JAVASCRIPT REMOTE FORMS .. 20
OMNIS ENVIRONMENT .. 20
WINDOW PROGRAMMING .. 21
WINDOW COMPONENTS ... 21
REPORT PROGRAMMING .. 22
DEPLOYMENT TOOL ... 22
OMNIS GRAPHS .. 22
EXTERNAL COMPONENTS ... 23

WHAT’S NEW IN OMNIS STUDIO 10.2 REV 28632 24

JAVASCRIPT REMOTE FORMS .. 24
JAVASCRIPT COMPONENTS .. 24
CODE EDITOR .. 25
LIBRARIES .. 26
OMNIS ENVIRONMENT .. 26
WINDOW COMPONENTS ... 26
FUNCTIONS .. 26

WHAT’S NEW IN OMNIS STUDIO 10.2 ... 28

JAVASCRIPT COMPONENTS .. 30
JAVASCRIPT FORMS ... 51
METHOD EDITOR .. 54
MULTIPROCESS SERVER .. 62
WINDOW COMPONENTS ... 69
WINDOW PROGRAMMING .. 82
OMNIS LIBRARIES ... 87
OMNIS ENVIRONMENT .. 88

Table of Contents

4

LOCALIZATION .. 91
REPORT PROGRAMMING .. 92
OW3 WORKER OBJECTS ... 92
WEB SERVICES .. 100
OBJECT ORIENTED PROGRAMMING .. 101
JSON COMPONENTS ... 101
COMMANDS .. 101
FUNCTIONS .. 102
OJSON ... 104
JAVASCRIPT API .. 104
IMPORT/EXPORT .. 105
OMNIS VCS ... 105
DEPLOYMENT ... 105
OMNIS DATAFILE MIGRATION .. 106
EXTERNAL COMPONENTS ... 106

WHAT’S NEW IN OMNIS STUDIO 10.1 ... 107

CODE EDITOR .. 109
SQL WORKER LISTS .. 118
JAVASCRIPT REMOTE FORMS .. 121
JAVASCRIPT COMPONENTS .. 124
COMMANDS .. 131
WINDOW CLASSES & COMPONENTS ... 131
FUNCTIONS .. 136
OMNIS ENVIRONMENT .. 137
LIBRARIES AND CLASSES .. 139
JAVASCRIPT WORKER .. 140
REMOTE DEBUGGER .. 140
OMNIS DATAFILE MIGRATION .. 140
LIST PROGRAMMING ... 141
OBJECT CLASSES .. 141
FILE CLASSES .. 141
WEB SERVICES .. 141
REPORT PROGRAMMING .. 142
LOCALIZATION .. 143
JSON CONTROL EDITOR .. 144
OJSON ... 144
OW3 WORKER OBJECTS ... 144
DEPLOYMENT ... 145
OMNIS VCS ... 145
EXTERNAL COMPONENTS ... 146

WHAT’S NEW IN OMNIS STUDIO 10.0 ... 147

METHOD EDITOR .. 148
ACCESSIBILITY ... 172
JAVASCRIPT REMOTE FORMS .. 175
JAVASCRIPT COMPONENTS .. 179
REMOTE DEBUGGER .. 197
REMOTE OBJECTS ... 205
WEB AND EMAIL WORKER OBJECTS ... 207
JSON COMPONENTS ... 215
REPORT PROGRAMMING .. 216
LIBRARIES .. 216
COLOR THEMES AND APPEARANCE .. 217
STUDIO BROWSER ... 217
FIND AND REPLACE .. 218

 Table of Contents

 5

LOCALIZATION .. 218
DEPLOYING YOUR WEB & MOBILE APPS ... 221
SQL PROGRAMMING .. 222
OMNIS PROGRAMMING ... 222
WEB SERVICES .. 223
WINDOW CLASSES & COMPONENTS ... 223
ENCRYPTION .. 227
REPORT PROGRAMMING .. 227
FILEOPS .. 228
OMNIS VCS ... 228
OMNIS IDE ... 229
COMMANDS .. 229
FUNCTIONS .. 229
NOTATION .. 230

APPENDIX A .. 231

OBSOLETE COMMANDS .. 231

About This Manual

6

About This Manual
This document describes the new features and enhancements in Omnis Studio 10.2
Revision 30204 (as well as revisions 29818, 29538 and 28632), as well as Omnis
Studio 10.1 and 10.0.

Please see the Readme.txt file for details of bug fixes and any release notes for
Omnis Studio 10.2 Rev 30204.

 Software Support, Compatibility and Conversion Issues

 7

Software Support, Compatibility and
Conversion Issues

The following section contains issues regarding software support, compatibility and
conversion in the Omnis Studio 10.2 Rev 30204 patch release and other Omnis Studio
10.2 releases.

Serial Numbers and Licensing
You will require a new serial number to run Omnis Studio 10.2. Contact your local sales
office to buy a license or obtain an upgrade serial number under your current support

program, or go to our website: www.omnis.net

Library and Datafile Conversion
IMPORTANT: IN ALL CASES, YOU SHOULD MAKE A SECURE BACKUP OF
ALL OMNIS LIBRARIES AND OMNIS DATAFILES BEFORE OPENING THEM
IN OMNIS STUDIO 10.2.

Converting 10.0.0 Libraries

******** IMPORTANT NOTE: ********

ONCE A STUDIO 10.0.x LIBRARY HAS BEEN OPENED WITH OMNIS
STUDIO 10.1 or 10.2 IT CANNOT BE OPENED WITH STUDIO 10.0.x.

Converting 8.x or earlier Libraries

Omnis Studio 10.2 will convert existing version 8.1.x, 8.0.x, 6.1.x, 6.0.x and 5.x libraries
– THE CONVERSION PROCESS IS IRREVERSIBLE.

Disclaimer: Omnis Software Ltd. disclaims any responsibility for, or liability related to,

Software obtained through any channel. IN NO EVENT WILL OMNIS SOFTWARE BE

LIABLE FOR ANY INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL OR

CONSEQUENTIAL DAMAGES HOWEVER THEY MAY ARISE AND EVEN IF WE

HAVE BEEN PREVIOUSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Omnis Studio on macOS
macOS Monterey Support

Omnis Studio 10.2 Rev 31315 is certified to run on macOS 12 Monterey.

Running 10.2 on Big Sur

Omnis Studio 10.2 is certified to run on macOS 11 Big Sur from Omnis Studio 10.2 Rev
28632 patch onwards.

Studio 10.2

We released Omnis Studio 10.2 November 10, 2020, just before the official release of
Big Sur. It is possible that there will be compatibility issues, including some drawing
anomalies, when running the release version of Omnis Studio 10.2 on Big Sur. Drawing
support has been changing with each beta release of Big Sur that Omnis engineering
has been working with, but we have addressed issues now that Big Sur is released,
and the fixes were in the Studio 10.2 Rev 28632 patch release.

http://www.omnis.net/

About This Manual

8

Studio 10.1

Omnis Studio 10.1 will operate on Big Sur, but it will not be a certified or supported
configuration. We therefore recommend that you upgrade to Omnis Studio 10.2 as
soon as possible.

Studio 8.1

Big Sur is a large step forward in architecture and developers should note that older
applications such as Studio 8.1 cannot simply be adjusted for immediate use on this
new version of macOS.

We therefore recommend upgrading to Omnis Studio 10.2 if you believe there is a

business need or individual use case for you or your end users to use macOS Big Sur.

Window Refresh on macOS

The preventUpdateWithNoRefreshOn config.json item was introduced in Studio 10.1
Rev 29237 to handle window refresh on Big Sur, but this item was added to and
modified for Studio 10.2 Rev 30204. In Studio 10.1 Rev 29237 this property was only
applicable when running on Big Sur but now applies to all versions of macOS, i.e. from
10.14, to 11 and 12.

When preventUpdateWithNoRefreshOn is set to true and a window has set $norefresh
to kTrue then this will prevent changes to the window hierarchy, e.g. adding fields, from
causing a redraw to screen. The window changes will then be applied when $norefresh
is set to kFalse.

This is a hidden property that needs to be explicitly added to the config file. It is set to
false by default.

Node.js
Node.js is used in a number of features in Omnis Studio including Remote Debugging
and the JavaScript Worker.

The version of Node.js released with the macOS version of Studio 10.2 is now V16.6.1
which supports node running natively on macOS on M1 machines.

Gif Control
The GIF control has been removed from Omnis Studio 10.2 and is no longer supported
in this or future releases. You should find an alternative method to display GIF images
(a third-party external GIF control) or convert your images to a supported image format
such as PNG or JPG.

Default Printer (Windows)
The way the default printer on Windows is returned changed in the initial release of
Omnis Studio 10.2 and this has caused a few issues with some converted applications.
A workaround is to revert to the previous behavior by setting the new entry
"useLegacyDefaultPrinter" to true in the "windows" section of config.json.

Rebuilding External Components
All external components will need to be rebuilt to run with Omnis Studio 10.2 or above
using the source files from in the Ext Comp SDK accompanying this version.

macOS External Components

For Omnis Studio 10.2 or above we now use a newer version of Apple’s SDK to build
Omnis and our external component library and this requires a newer version of the

SDK and Xcode when building components for 10.2.

To be compatible with the Studio 10.2 SDK and later your component needs to use at a
minimum the macOS 10.14 SDK with a minimum deployment target of 10.11. This
requires a minimum of Xcode 10.2 on macOS 10.14.4.

 Software Support, Compatibility and Conversion Issues

 9

The C++ Language Dialect must be set to support C++11 as a minimum, and the C++

Standard Library set to libc++ with C++11 support accordingly.

Context Menus & $active
Context menus in JavaScript Remote forms previously only opened if $enabled for the
control was kTrue. In Studio 10.x, they are now opened if the $active property of the
control is true: $active is a new property added to all JavaScript components. This may
have changed the behavior of your context menus on certain controls, so you are
advised to examine any event handling code in your application that opens context
menus. See the section in this manual about the new $active property for more
information.

Drag and Drop
Support for dragging and dropping operating system files and file data (in the thick
client) has been combined and simplified providing more control in your event handling
code. As a consequence there may be some compatibility issues, but these are
outlined later in this document.

IE 11 Support
Omnis Studio 10.2 or above does not support IE 11 (or earlier) for the JavaScript
Client. Microsoft will end support for the desktop version of IE 11 in November 2020.

Open SSL
Omnis Studio 10.2 supports OpenSSL 1.1.1 so you should update your copy.
OpenSSL is used to provide SSL in the OW3 Workers.

Exporting Double Quotes
Double quotes are now exported as a pair of double quotes when enclosing exported
text in quotes (see RFC 4180 point 7), which has an impact on the command Enclose
exported text in quotes (Enable). If double-quotes are used to enclose fields, then a
double-quote appearing inside a field must be escaped by preceding it with another

double quote. For example: "aaa","b""bb","ccc".

Method Editor: Code Conversion
IMPORTANT NOTE FOR PRE-STUDIO 10.x USERS: There has been a major rewrite
of the code editing part of the Method Editor (in Studio 10.0), which means you can
now enter Omnis commands and code using freetype. Due to these major
enhancements, there has been several enhancements or changes in the Omnis
programming language and command syntax. Therefore, when you convert an Omnis
library to Studio 10.x or above (e.g. from Studio 8.x or earlier), your Omnis code will be
converted to the new syntax as part of the library conversion process.

Once you convert your library and start using the new free-type Code Editor in Studio
10.x or above, you cannot revert back to the old editor in Studio 10.x (or above):
that is, the old interface for modifying methods, using point-and-click, has been
removed from Studio 10.x.

See ‘Library Conversion’ under the Code Editor section (under Studio 10.0 in this
guide) for more information about the changes made to the Omnis code syntax during
library conversion.

About This Manual

10

Java Legacy Integration
Oracle has changed the way it licenses Java. Therefore, in order for you to avoid the
ongoing use of Java in connection with Omnis Studio 10.1, or above, we no longer
provide support for various Java files in the Omnis Studio 10.x tree and consequently
we have removed various Omnis libraries or features that rely on Java. Any Java-
dependent features will no longer appear in Omnis Studio 10.x and will only be shown
or supported when the relevant files are reinstated back into the Omnis tree. By doing
this now, we have allowed you to utilise Java supported features in Omnis Studio by
choice only. We urge you to check the Oracle website for details about how Java is
licensed and the changes to licensing they have made.

Some of those Java-dependent libraries or features in Omnis Studio that have been
removed have been superceded by newer technologies and we encourage you to
switch to those for future development. For example, support for the old OWEB Worker
Object external commands has been removed and we have replaced all the commands
with a new set of commands in the OW3 Worker Object command set (e.g. the POP3
and FTP commands), as well as adding new support for Cryptography, Hashing, and
JavaScript (node.js) worker objects.

The following Java-related files and features have been removed or support for them

has changed:

❑ Java folder
The java folder and its contents has been removed from the Omnis Studio
development, server and runtime trees; you will need to install Java for any Java-

dependent features to work in Omnis Studio

❑ JDBC DAM
The JDBC DAM (damjdbc) has been removed from Omnis Studio (xcomps) and will
no longer appear in the SQL Browser.

❑ Java Objects
The javaobjs and javacore libraries have been removed; the Reset Java Class
Cache hyperlink in the Studio Browser is therefore not shown, and will only appear
if the JavaObjs Library is put back in the Omnis tree and loaded

❑ Web Services
The old SOAP based Web Services library (wsc.lbs in the startup folder) has been
removed, and it will no longer appear in the Studio Browser: you should use the
new REST based Web Services that do not depend on Java; it is also possible to

use SOAP using node.js via the new JavaScript Worker Object

❑ Web Worker Objects – Web & Email communications
The old OWEB Worker Objects external (oweb in the xcomp) and their associated
commands (FTP, SMTP, etc) have been removed and will no longer appear in the
IDE (e.g. Code Assistant): you should use the new OW3 based Worker Objects that
do not depend on Java. In addition, the OWEB external contained a number of
static methods that have been moved to OW3: see below.

❑ Java Options
The $usejavaoptions and $javaoptions properties no longer appear in the Property
Manager and Code Assistant, and will only appear if the JavaObjs Library is put
back in the Omnis tree and loaded.

If you wish to continue to use any of the Java-dependent files in Omnis Studio you
need to install Java and place any Java-dependent files we used to provide back into
the Omnis tree. Please contact Technical Support to obtain the Java files, or look on
our developer website under General Information.

https://www.omnis.net/developers/resources/documentation/generalinfo.jsp

 Software Support, Compatibility and Conversion Issues

 11

OWEB Static Methods

A number of static methods (functions) in the OWEB external have been moved to the
OW3 external command package. You are urged to change your code to use the new
methods. You should change your code to use OW3.$methodname() rather than
OWEB.$methodname().

The OWEB methods affected are:

$makeuri() $makeuuid() $unescapeuritext()

$escapeuritext() $gethardwareid()

Sybase DAM
The Sybase DAM in Studio 10.x has been modified to work with the FreeTDS – libct
client library in place of Sybase Open Client. By exploiting the common heritage
between technologies, the libct library allows native connection to Microsoft SQL
Server databases as well as Sybase ASE and ASA databases.

We have provided a technote (TNSQ0036) which explains how to use the libct client
library. This page also provides downloads of pre-compiled libct libraries for Windows,
macOS and Linux.

Omnis 7 Events
The $v3events library preference was removed from Omnis Studio 10.0, but has been
reinstated in this version 10.1 for backwards compatibility; note however, the
preference is now only visible in the Property Manager via the library preferences in the
Notation Inspector. The $v3events library preference is supported in the VCS for
converted Omnis 7 libraries.

First Run Receipts on macOS
By default, if a new version of Omnis is installed it will use any existing user data which

already exists that matches the Omnis package name.

To preserve pre-existing user data and allow a new installation of Omnis with a new set
of user data, a deployment can use the receipt mechanism.

This is enabled by setting resource 25598 to "1" in the Localizable.strings file for the

language used, e.g.
"CORE_RES_25598" = "1";

If receipts are enabled then when Omnis is first run it will add a unique timestamp to
the end of the user data folder name, e.g.
~/Library/Application Support/Omnis/Omnis Studio 10 x64_20181005085835

and place an associated receipt into a folder with the same name as the Omnis

package.
~/Library/Application Support/Omnis/Receipt/Omnis Studio 10.0 x64

This then ties the timestamped user data with that installation of Omnis.

To provide a clean install of Omnis, the receipt folder needs to be removed, e.g. this
could be done via a script as part of any deployment installation process.

This will then generate a new set of time-stamped user data while preserving the old

set.

Note: The resource in Localizable.strings should not be edited in an already signed
package as this will break the code-signature. A package should be re-signed after the
change is made.

What’s New in Omnis Studio 10.2 Rev 31315

12

What’s New in
Omnis Studio 10.2 Rev 31315

The following enhancements have been added to Omnis Studio 10.2 Rev 31315.
Please see the Readme.txt file accompanying the release for details of bug fixes in this
release. The following features have been added to Studio 10.2 Rev 31315:

❑ Apple M1 & macOSSupport
this release supports application development and deployment using Omnis Studio
10.2 on macOS running natively on M1 (arm64) and Intel (x86_64) based Apple
computers; plus this release is certified to run on macOS 12 Monterey

❑ Main Window Resize Message
A new task message $mainresized has been added, which is called when the main

Omnis window has been resized on the Windows platform

❑ JavaScript Forms
any subform in the inheritance hierarchy can now have different breakpoints to their
superclass

❑ Reports
the HTML Icon (link) external component now has the $keepaspectratio property to
ensure the icon is displayed correctly

Apple M1 & macOS Monterey Support
This release on macOS is a 'Universal build' meaning that it will run natively on M1
(arm64) and Intel (x86_64) based Apple computers. There are a number of
enhancements that support Omnis Studio running on M1 based Macs or macOS 11+.

Plus this release is certified to run on macOS 12 Monterey.

Toolbars
There is a new config.json item useToolbarStyleExpanded to allow the legacy
expanded toolbar style instead of the default (typically unified).

The useToolbarStyleExpanded config item has been added to the 'macOS' section of
the cofig.json file and only applies to macOS 11 and later. When set to true, the
window toolbar style will use the legacy expanded style, i.e. toolbars sit under the
window title. By default, this is false and toolbars will use the new automatic style on
macOS 11 and later, i.e. toolbars are unified and to the right of the window title.

sys(8)
The sys(8) function returns MACARM when Omnis is running on an M1 (arm64) based

Mac.

Building macOS Universal Components
In order to build macOS Universal components you need to use Xcode 12 or above.
The Omnis resource compiler is now a macOS Universal binary and should replace the
version in the Xcode tree at:
/Applications/Xcode.app/Contents/Developer/Tools/omnisrc64.app

The macOS resource compiler now expects a UTF-8 encoding for the strings it reads
from a resource file. It will write a message to the build log if a string is encoded
incorrectly. Although a message is written to the build log, the build continues,

 The Omnis Environment

 13

however, you get a warning about an incomplete Localizable.strings file, and this is the

indicator that you need to look at the build log.

This is only an issue for a small number of text resources, e.g. extended ASCII codes
such as the Copyright symbol or the £ character.

A component which is currently using the existing Intel only 10.2 SDK with Xcode 11
should be compatible with Xcode 12. Once opened with Xcode 12 this should build out
a Universal binary version (a fat x86_64 / arm64 binary).

The important Xcode build settings are:-

❑ Architectures
Should be $(ARCHS_STANDARD_64_BIT)
 or $(ARCHS_STANDARD) /
 Standard Architectures (Apple M1, Intel).

❑ Build Active Architecture Only
Should be No in order to build out both supported architectures. Typically this will
be No for Deployment and Yes for Development.

The generic and jsgeneric components provide a good starting template for a project.

The component library and any third-party libraries that a component uses MUST also

be Universal to build out a Universal component.

To check the architecture included in a binary use the lipo command from the Terminal,
e.g.
% lipo -info /Users/macminisilicon/Downloads/OSX-SDK-10.2-31054-

Beta/_OSXUnicode/generic.u_xcomp/Contents/MacOS/generic

Architectures in the fat file: /Users/macminisilicon/Downloads/OSX-SDK-10.2-

31054-Beta/_OSXUnicode/generic.u_xcomp/Contents/MacOS/generic are: x86_64

arm64

For a binary to load natively on both Intel and M1 machines it must include both the

x86_64 and arm64 architectures.

Note. An Intel only component cannot be loaded by the Universal version of Omnis
Studio running natively on Apple M1 machines.

Rebuilding External Components
If you are upgrading from Studio 10.1 or before, you will need to rebuild all external
components to run with Omnis Studio 10.2 or above using the source files from the Ext

Comp SDK accompanying this version.

The Omnis Environment
Main Window Resize Message
A new task message $mainresized has been added, which is called when the main
Omnis window has been resized on the Windows platform (it does not apply on

macOS).

$mainresized has two parameters, pWidth and pHeight, which are the dimensions of
the available area of the main window (excluding any docking areas if present). When
the main window is minimized the parameters are both zero.

In addition, there are new sys functions sys(251) and sys(252) that return the width and
height of the available area of the main window, respectively.

What’s New in Omnis Studio 10.2 Rev 31315

14

Code Editor
Bad name detection has been added to the Code Editor, so bad notation names are
detected while entering code rather than handling this through automatic retokenization
using double slashes.

There is a new item ‘badNotationNameIsSyntaxError’ in the ‘ide’ section of config.json,
which defaults to true, enabling the new behavior. Set this to false to restore the

previous behavior.

JavaScript Remote Forms
Layout Breakpoints
It is no longer required that all subforms within the inheritance hierarchy of a set of
Remote forms have the same layout breakpoints. In other words, a subform can now

have different layout breakpoints to its superclass.

Report Programming
HTML Icon (Link)
The HTML Icon (Link) external component (available for report classes) did not always
display the icon correctly in previous versions. Therefore, the component now has the
$keepaspectratio property which needs to be set to kTrue for the icon to draw properly
(the default is kFalse to maintain backwards compatibility).

Functions
mouseover()
The constant kMScreenPos has been added for use with the mouseover() function.

mouseover(kMScreenPos) returns a row with 2 columns, h and v, which are the
horizontal and vertical position of the pointer (mouse) in screen coordinates,
respectively.

sys(251)
Returns the width of the available area of the main Omnis application window.

sys(252)
Returns the height of the available area of the main Omnis application window.

 List Programming

 15

What’s New in
Omnis Studio 10.2 Rev 30204

The following enhancements have been added to Omnis Studio 10.2 Rev 30204.
Please see the Readme.txt file accompanying the release for details of bug fixes in
Studio 10.2 Rev 30204.

List Programming
List Column Calculations
A new library preference $clib.$prefs.$validcolumninbadrowisnull has been added. If
true, non-existent list columns in calculations evaluate to #NULL rather than an empty
character string. This allows for expressions like myList.col or myList.10.col where the
list line does not exist, perhaps because the list is empty.

Window Programming
Folders in Operating System Drag and Drop
Due to issues dropping folders when dragging items from Omnis onto the operating

system, folders are now included in the list of dropped objects, with a size of zero.

Using Non-TrueType fonts for Background Objects
A new config.json item has been added to allow you to use non-TrueType fonts for
window background objects.

The config.json item 'backgroundObjectsMustUseTrueTypeFont' has been added to
the 'windows' section of config.json. If true (the default) TrueType fonts must be used.
When false, you can use non-TrueType fonts for background objects, but note that in
some situations, e.g. in drag bitmaps, the text may not draw.

Omnis Data Bridge
ODB Encryption
The $odbencrypt session property has been added. If kTrue (the default) ODBC Data
Bridge connections use end-to-end encryption. Improved network performance can be
achieved by disabling encryption. The ODBC Data Bridge uses the value that is in
effect when $logon() is called, i.e. if kTrue when $logon() is called, fetch results will still
be encrypted for the duration of the connection even if $odbencrypt is subsequently
cleared.

Note that you do not need to update the ODBC Data Bridge to use this feature, since it
automatically recognizes encrypted and non-encrypted data, and responds in kind.

What’s New in Omnis Studio 10.2 Rev 30204

16

Oracle DAM
RPC Methods

The $rpcprocedures(), $rpcparameters(), $rpcdefine() and $rpc() methods have been

added to the Oracle DAM.

$rpc() executes a PL/SQL begin… end statement block that calls the stored procedure
or function. Operation is as described in the SQL Programming chapter with one
exception. When bindng single-column SELECT tables, it is necessary to pass the
required list column numbers along with the parameter definitions. To do this, Omnis
makes use of column 5 of the list returned by $rpcparameters(). For example:
Do cStat.$rpcparameters('credit') Returns #F

Do procList.$define()

Do cStat.$fetch(procList,kFetchAll) ## returns 4 rows

Do procList.3.5.$assign(1) ## Assign the list column number to 1

Do procList.4.5.$assign(2) ## Assign the list column number to 2

Do cSess.$rpcdefine('credit',procList) Returns #F

Do lCreditList.$define(lName,lBalance)

Do cStat.$rpc('credit',1,10,lCreditList,lCreditList) Returns #F

The additional values assigned to procList correspond to the column numbers that
would otherwise be passed via the $plsql() method.

You can also call a stored function using the $rpc() method and the return value will be

written to the statement object’s $rpcreturnvalue property. For example:
Begin statement

Sta: CREATE OR REPLACE FUNCTION test_function

Sta: RETURN VARCHAR2 IS

Sta: BEGIN

Sta: RETURN 'This is being returned from a function';

Sta: END test_function;

End statement

Do cStat.$execdirect() Returns #F

Do cStat.$rpcparameters('test_function') Returns #F

Do procList.$define()

Do cStat.$fetch(procList,kFetchAll)

Do cSess.$rpcdefine('test_function',procList) Returns #F

Do cStat.$rpc('test_function') Returns #F ## now check the value of

$rpcreturnvalue

$rpc() is limited to calling a single stored procedure or function. To execute more
complex PL/SQL constructs, you can continue to use the $plsql() method.

 JavaScript Components

 17

What’s New in
Omnis Studio 10.2 Rev 29818

The following enhancements have been added to Omnis Studio 10.2 Rev 29818.
Please see the Readme.txt file accompanying the release for details of bug fixes in
Studio 10.2 Rev 29818.

JavaScript Components
Virtual Keyboard & $negallowed
The $inputtype for JS Edit fields is no longer set to 'number’ if $negallowed is true, as
these don't guarantee the presence of a minus key. This may mean that some
situations which previously showed a numeric keyboard no longer will. You should note
that a touch device's virtual keyboard is more likely to use a numeric keyboard if
$negallowed is false.

JavaScript Remote Forms
$construct Row
A 'clientPlatform' column has been added to the $construct Row parameter for remote
forms. This denotes the platform on which the client is running, and returns one of the
following strings: 'Windows', 'macOS', 'Linux', 'iOS', 'Android' or 'Unknown'.

Omnis Environment
Code Assistant
There is a new Boolean item listShowsNamesFirst in the 'codeAssistant' section of
config.json, to show method names before attributes in Code Assistant lists (it defaults
to true). When true, names occur in the Code Assistant list before attributes etc that
start with $. When false, the list order is the same as in previous versions, where $
entries typically occur before names.

Method Editor
There is a new item "methodeditorfadealpha" (value 0-255) in the "IDEmethodEditor"
section of appearance.json to allow you to set the fade level of the method editor when

editing a variable value in the debugger variable panel.

DB view in Query Builder
An option has been added to the 'Other' menu in the Query Builder to create a DB
view.

Class Comparison Tool
You can now filter the list of classes in the Class Comparison tool on keypress for
revisions.

What’s New in Omnis Studio 10.2 Rev 29818

18

Hub Samples
There is a new sample app showing the use of $userworker in SQL Worker Lists in the

Samples section of the Hub in the Studio Browser.

Libraries
JSON Export
The reporting of conflicts in JSON Export has been improved. Note that the conflict
detection process uses the modify date of each file in the JSON tree for the class, so if
a date has changed a conflict will still be reported even if the file contents have not
changed. Note also that this means conflicts will be reported (if overwrite conflicts is
off) when you first export a library with this updated version of the JSON export.

Window Components
Entry Fields
A new property $showellipsis has been added to the fat client Single Line Entry Field
(only applies when field is read-only, i.e. the data is not being edited). If true, an ellipsis
is shown at the end of truncated text in the field if the text is too long to be displayed
(this only applies when the control is read-only, $horzscroll and $righttoleft are both

kFalse, $align is kLeftJst and $passwordchar is not set).

Note that the edit field always includes at least the first character of the text, so very
narrow edit fields will sometimes show truncated text, but in most cases this will not be
apparent.

 JavaScript Components

 19

What’s New in
Omnis Studio 10.2 Rev 29538

The following enhancements have been added to Omnis Studio 10.2 Rev 29538.
Please see the Readme.txt file accompanying the release for details of bug fixes in
Studio 10.2 Rev 29538.

JavaScript Components

Position Assistance

When positioning objects in the center of a remote form the Position Assistance feature
now uses the center of the current layout breakpoint, not the center of the remote form
design window, as in previous versions.

Hot Control Properties

Several JS controls will now use their “hot” colors when they have the focus, and not
just when the pointer is over them, as in previous versions. This enhancement applies
to the “hot” properties for the following controls: Nav menu, Split button, Hyperlink,
Nav bar, Tab bar, and Trans button.

Border Radius

The $borderradius property has been added to the Date Picker and Popup Menu
controls allowing you to apply a border radius to these controls.

Paged Pane

The $fieldstyle property has been added to the Paged Pane control for the JS Client
allowing you to apply a style to the control.

Data Grid
Assigning Colors

Using kEscColor with the style() function to change the color of items in a Data grid
has been improved.

The parameters for style() can now be any HTML color string, such as "#FF0000". For
client methods that execute on the client, the color parameter must be a literal string
and therefore enclosed in double quotes. For example, style(kEscColor,"#FF0000"), or
style(kEscColor,"rgba(0,0,255,0.5)").

Omnis does not validate the HTML color syntax, so you should check the syntax is
correct to avoid runtime errors.

Frozen Columns

The $frozencolumns property in Data Grids can now be assigned at runtime.

What’s New in Omnis Studio 10.2 Rev 29538

20

JavaScript Remote Forms
Timeouts in Remote Tasks
The $ondisconnected remote task method is now shown in the built-in methods list in

the method editor and Interface Manager.

Omnis Environment

Find and Replace
When using Find and Replace, the found or replacement text is now highlighted in the
Find and Replace log. The Highlight Matches option in the context menu for the log

allows you to toggle the find or replace text highlighting (the default is on).

The color used for highlighting the found or replacement text is the method line
highlight color, that is, the highlight color used when the Code Editor field does not
have the focus. If the text occurs more than once, up to the first 16 occurrences in the

log are highlighted.

Catalog

You can now drag variables and other items from the Catalog (F9/Cmnd-9) to the
Initial value and the Description fields in the variable pane of the method editor: for this
to work, the focus must be on the initial value or description field before switching to the

Catalog to select the item.

Clipboard Commands for Fields
The clipboard menu items Cut, Copy, Paste, etc are now available for all entry fields in
the Omnis environment, such as in the Method Editor, and for Entry fields in your apps
when you Right-click/Option-click on the field.

Boolean Variable Values

The value of Boolean variables is now shown in a tooltip in the Code Editor when you
hover over the variable. The "Show Empty Booleans" option has been added to the
Debugger Options menu in the Code Editor to control whether empty Booleans are
shown as Empty or No/False; the default is on, meaning that unset Booleans are

shown as empty.

Tooltips

You can now specify the maximum width for tooltips, used within the Omnis IDE, e.g. in
the Property Manager, and for window controls in all but a few special cases. The
maxWidth setting in the ‘tooltip’ section of the appearance.json file specifies the width
in pixels; it defaults to 0 meaning tooltips can be up to a third of the width of the screen
or application window.

Notation Errors

A new item ‘stricterNotationErrorChecks’ has been added to the ‘defaults’ section of the
config.json file. When set to true, certain unresolved name errors (from such notation in
the form $cinst.name or $ctask.name) now result in a debugger (or runtime) error if
$clib.$prefs.$reportnotationerrors is kTrue. The option defaults to false, so there is no
change to behavior unless you enable the new option.

 Window Programming

 21

Trace Log

You can now copy selected lines from the Trace log to the clipboard using the Edit

menu Copy command or Ctrl/Cmnd-C shortcut key.

Omnis Configuration File
Omnis Port

There is a new item disableInRuntime in the ‘server’ section of the config.json file to
prevent the Omnis Server listening on its own port: this can be used to prevent firewall
prompts when the Omnis Server is not required.

File associations and UAC

The items in the config.json file regarding file associations and UAC have been
renamed, specifically regarding capitalization:

❑ UpdateFilesAssociations becomes updateFileAssociations (also the ‘s’ was
removed)

❑ NoAdmin becomes noAdmin

❑ HideStudiorgMessage becomes hideStudiorgMessage

Window Programming

Toast Messages
The iStack parameter in the $showtoast method has a new option kToastStackCenter
to allow you to stack the toast messages in the center of the screen or application
window.

Window Components

Complex Grids
The $extendedgridlines property has been added to Complex grids. When set to

kTrue, the grid lines of the final row extend to the base of the grid.

Key Events

Support for the Windows VK_PAUSE virtual key has been added to the evKey event.
In this case, the pSystemKey event parameter has a value of 100 to signal the Pause
button has been pressed.

Combo box

The $disablesearchonopen property has been added to fat client Combo boxes, Data
grids (applies to combo box columns), and toolbar Combo boxes.

If true, the automatic search is disabled, that is, the content of the combo box list is not
used to populate the edit field based on the content of the edit field when the popup list
is opened. For Data Grids, this property is used for columns with $columntype
kDataGridComboPicker.

Tab Pane

A new property $colortabselectedhighlightmacos has been added to the fat client
Tab Pane control to allow you to set the color of the active tab for tab panes on macOS

only.

What’s New in Omnis Studio 10.2 Rev 29538

22

Window Resizing
The evResized event is now reported when a window with the $edgefloat property set
to floating edges resizes due to the main Omnis application window being resized (this
only applies on the Windows platform).

Report Programming

HTML Link Object
The $tooltip property has been added to the HTML Link report external component.
This contains the tooltip used for the link specified by $address in Page Preview
reports (tooltips will not work in PDF reports). It can contain expressions including
square bracket notation.

Report Entry field

The $linkaddress and $tooltip properties have been added to the Report Entry Field.

$linkaddress is the link address used by the Preview and PDF report destinations to
provide a hyperlink. Note this provides similar functionality to the $address property of
the HTML Link objects.

Deployment Tool
Build Folder
A new Go to menu has been added to the Deployment Tool that allows you to see the
build folder in the system file explorer.

Omnis Graphs

High Resolution Charts
The Graph2 component now draws charts in high resolution suitable for display on high
resolution displays. In this case, charts are generated at twice the size and are
displayed at the correct physical size on high resolution displays.

You can disable the new behavior by setting the new property $disablehighresolution to
kTrue (the default is kFalse meaning high resolution charts are supported). If the client
is running on a display that does not support high resolution, the property will be set to
kTrue automatically, and you will not be able to change the value of the property.

 External Components

 23

External Components

There is a new Window Message to report the mouse wheel has been rotated.

WM_MOUSEWHEEL
The WM_MOUSEWHEEL message is sent to a window when the mouse wheel is
rotated.

If the mouse is not captured, the message goes to the window beneath the cursor.
Otherwise, the message goes to the window that has captured the mouse.

Parameters:

direction – Value of wParam. The high-order word indicates the distance the wheel is
rotated. A positive value indicates that the wheel was rotated forward, away from the
user; a negative value indicates that the wheel was rotated backward, toward the user.

Returns:

An external component should return zero if it processes this message.

Notes:

On macOS

 1) The direction value will be either 0, 1 or -1. No other values are supported.

 2) Controls that have no scroll bars added will need to respond to
WM_FLD_NEEDSWM_MOUSEWHEEL to receive a WM_MOUSEWHEEL message (
see example)

Example:
// This is an example handing WM_MOUSEWHEEL

// Processing to be added to WNDPROC..

switch (message)

{

 // controls with no scroll bars need to return 1L for the

WM_FLD_NEEDSWM_MOUSEWHEEL message to receive WM_MOUSEWHEEL

 case WM_FLD_NEEDSWM_MOUSEWHEEL: return 1L;

 //

 case WM_MOUSEWHEEL:

 {

 // Mouse wheel moved

 if (wParam)

 {

 qbool lineUp = ((qshort)HIWORD(wParam)) >= 0;

 }

 // return 0 to indicate this control has processed this message.

 return 0L;

 }

#EXTCOMPLIBS file location

You can now copy the text from the #EXTCOMPLIBS file location field, plus the field

will auto-scroll and displays a tooltip, making the file location more visible.

What’s New in Omnis Studio 10.2 Rev 28632

24

What’s New in
Omnis Studio 10.2 Rev 28632

Omnis Studio 10.2 was released in November 2020. This patch release provides some
important fixes to fully support 10.2 on macOS Big Sur, plus some other bug fixes and
minor enhancements.

The following enhancements have been added to Omnis Studio 10.2 Rev 28632.
Please see the Readme.txt file accompanying the release for details of bug fixes in

Studio 10.2 Rev 28632.

JavaScript Remote Forms
Remote Form Design
The Remote form Web Preview design mode in the initial release version of Studio
10.2 used HTML templates in the html/design folder to render the web view in the
remote form in design mode. Note that design mode now uses the same template as
runtime mode, either jsctempl.htm, or the $htmltemplate from the design task, so
jsctempl.htm no longer needs to be present in the html/design folder. The HTML file
used for design mode is still generated in the html/design folder, but only to render the

Web Preview of the form.

JS Themes

You can now edit the current or selected theme from the JavaScript Theme selector
dialog (opened with Ctrl-J when editing a remote form) by Right-clicking on a theme or
background of the dialog and selecting the Open JavaScript Theme Editor option; this

opens the selected or current JS theme.

Enter & Esc Keys in Subforms

The $okkeyobject and $cancelkeyobject properties are now activated when the focus is
on the containing form. $okkeyobject and $cancelkeyobject will now receive a click
when the Enter or Esc keys are pressed, and the focus is on the whitespace within its
container. Each parent form (when working with subforms) will be checked for an
$okkeyobject or $cancelkeyobject until it reaches the top form. The exception to this is
if the subform is contained within a subform set, and in this case, it will keep checking
parent forms until it reaches its containing subform.

JavaScript Components
JS Edit Control
Incompatible input types are now prevented from being used with JS Edit Input Masks.
For example, the kJSInputTypeNumber and kJSInputTypeEmail values of $inputtypes
are incompatible with JS Edit input masks. If $inputtype is one of these values, and
$inputmask is set, the input element will use the text type (effectively

kJSInputTypeDefault).

 Code Editor

 25

JS Button

When $textishtml for a JS Button control is set to kTrue the text in $text is treated as
HTML. The HTML needs to be valid for it to be rendered, including when used as the
contents of a <p> element, so for example you cannot use a <p> element inside
another <p> element.

Field Styles for Complex Grids

The $rowdividerlinestyle is now assignable at runtime and by $fieldstyle. As
$rowdividerlinestyle is a custom field in a $fieldstyle it gets assigned at runtime, and is
treated like any other runtime property change, therefore it is now assignable at
runtime. Note that $rowdividerlinestyle changes just the border between each row in a
Complex grid, unless $rowborder is set to kJSborderPlain, in which case it also effects
the border around the client, i.e. the section of the complex grid which contains the
rows.

SVG Icons
More SVG icons have been added to the ‘material’ iconset, including icons for eating
out (restaurant and café), travel (bus, train, car, bicycle), and so on. You can find more
SVG icons on the Google Material icons website, and add them to the material iconset
in Omnis (html/icons folder: note Omnis uses the ‘black rounded’ type). Alternatively,
you can source other SVG icons and create your own new icon sets. You must convert
any SVG files to ‘themed SVG’ icons using the SVG Themer tool (Add-ons>>Web

Client Tools option) if you want to use the icons with themes in the JS Client.

PNG Icon Editor
You can now sort icon pages in ascending or descending alphabetical order in the Icon
Editor (Tools>>Icon Editor option used for editing PNG icons) by clicking on the ‘Pages’
title above the list of icon pages.

Code Editor
Export List or Row Variables
You are now able to export the complete contents of a list or row variable from the
Variable menu to a tab-separated file. There is a new menu item "Export Tab
Separated..." that appears in the Variable menu for list and row variables, in the same
location as the "Copy Value" option that appears for various simple data types. When
selected, it prompts for the path name of a file that receives a tab-separated value
representation of the list or row.

The output file is UTF-8 with a UTF-8 byte-order-marker. The first export row
comprises tab-separated column names. Simple types in the list are exported as their
actual value, whereas types such as lists are output as an information string, e.g. (5
Lines). If the characters tab, carriage return, linefeed or backslash occur in the data,
they are exported as escapes: \t, \r, \n and \\ respectively. If a column has a #NULL

value, it is exported as the text NULL.

Code Folding

You can now remove code folding from all the methods in a class or all classes in a
library. All classes that can contain methods now have the method $removecodefolding
which removes code folding from all methods in the class, and returns the number of
methods from which code folding was removed. For example, to remove code folding
from all methods in all classes in a library, execute:
Do $libs.library.$classes.$sendall($ref.$removecodefolding())

What’s New in Omnis Studio 10.2 Rev 28632

26

In addition, the option ‘exportcodefoldingstate’ has been added to the
$exportimportjsonoptions Omnis Preference ($root.$prefs) to control whether or not the
code-folding state in the methods in your library is exported; the option is set to false by
default so the code folding state is not exported.

Libraries
JSON Import Option
There is a new boolean option ‘importtreatsunknownpropertyaswarning’ in the
$exportimportjsonoptions Omnis Preference ($root.$prefs) to treat unknown properties
in imported JSON as a warning; it is true by default.

JSON Import Error Messages

Error messages have been improved when an import JSON fails due to the inability to
parse a method line; the text that cannot be parsed is now included in the error
message.

Omnis Environment
Help System
All HTML pages used to create F1 style Help systems using the Omnis Help Project
Manager (available in the Tools menu) must now be UTF-8 encoded. Due to Character
set issues building help word indexes, all HTML pages used with the Help Project
Manager (and any additional text files such as the _exclude files) must now be UTF-8
encoded.

Window Components
OBrowser
The property $donotredirectconsoletotracelog has been added to OBrowser. If true (the
default), browser console messages generated by OBrowser are not redirected to the
Omnis trace log.

Functions
split()

There is a new split() function that allow you to split a string at the specified delimiter
(comma is the default delimiter).
split(string[,delimiters=',',stripWhitespace=kFalse])

Splits the string at the character(s) in delimiters and returns a list of the resulting
substrings. The function strips leading and trailing whitespace from each substring if
stripWhitespace is kTrue (default is false). The function is available in both normal
methods, and client-executed methods.

 Functions

 27

sys(192/292)
There is a new item "sys192ListRowLimit": N in the "defaults" section of config.json
which allows lists (and rows) with up to N rows to be included as a third column in the
output parameter data for the sys(192) and sys(292) functions (note: sys(192) returns
the method stack as a list, and sys(292) returns the calling method).

If N <= 0 (the default) then sys(192/292) behave as before. If N > 0, then each
parameter in the parameter list stored in each line of the sys(192/292) list has a third
column, which for lists and rows contains the actual list (or row) data, if the list or row
has less than or equal to N lines. In all other cases (not a list or row, or line limit N
exceeded) column 3 is empty.

What’s New in Omnis Studio 10.2

28

What’s New in
Omnis Studio 10.2

For Omnis Studio 10.2 the appearance and useability of many of the JavaScript
components has been greatly enhanced with the introduction of color themes and
support for SVG icons. In design mode, position assistance is provided to help you
arrange objects on a remote form, plus remote forms are now displayed in a web
preview in design mode so you can see exactly how your forms will look at runtime.

This release also includes many enhancements in the Code Editor, including Code
Folding and Word Wrapping, plus you can now edit your code when using the Remote
Debugger. For the thick client, there is a new Token Entry Field and Breadcrumb
control, plus Page panes can be displayed as Side panels improving the UX for

desktop apps.

The following features have been added to Studio 10.2:

❑ JS Client Themes and Appearance
The appearance and useability of the JavaScript components has been greatly
enhanced with the addition of JS Themes for managing colors used throughout
your application; some of the JS controls now have animations and other visual
effects to improve the UX for your apps; plus the default size of some of the
components has been increased to better cater to touch devices

❑ SVG Icons
you can now use SVG image files for icons for JavaScript components and window
controls; SVG images are vector based and are inherently scalable, therefore a
single file can provide multiple icon sizes; specifically, an SVG image will scale to fit
the icon area available in a control; and for the JS client only, SVG icons can be
themed which means they change color to match the current theme

❑ Position Assistance
colored visual guides are now displayed automatically when you move or resize
objects using the mouse (pointer) in a remote form, report or window class design
screen; as you move or resize objects, colored lines are shown and objects will
snap into position to help you arrange the objects in a form or report

❑ Remote Form Design
When you design a JavaScript Remote form it is now displayed in a Web Preview
(using the built-in Chromium browser) so you can see exactly how a remote form
will look and behave at runtime in the end user’s browser, including the use of the
current theme and any other visual effects

❑ New JS Split Button Control and other enhancements
the new JS Split Button provides a dropdown menu of choices on a single button;
new style & positioning properties for the Data Picker for Edit controls and Data
Grids; you can now send an SMS message to multiple recipients in the Device

Control; plus the $inputmask property has been added to JS Edit controls

❑ Method Editor & Code Editor
the Code Editor now supports Code Folding allowing you to collapse and expand
code constructs, to improve readability and code manipulation, while Word
Wrapping allows long lines of code to wrap onto the next line; there is a new
Search box above the Method Names tree allowing you to find specific methods or
filter the list; plus built-in methods for a class are now shown in the method list

 Functions

 29

❑ Remote Debugger
You can now edit methods and code while stepping through live code in the
Remote Debugger; prior to this, code could only be viewed in read-only mode while
using the remote debugger

❑ MultiProcess Server
The Linux Headless Server can now be run in MultiProcess Server (MPS) mode
which can ultilize the multi-core processors on your server, providing performance
improvements for your server based, web and mobile apps

❑ New Window controls
the new Token Entry Field allows the end user to enter text which then becomes
tokenized (a single block), similar to the recipient field in email programs; the new
Breadcrumb control can be used to display the end user’s “location” within the
hierarchy of an application; and the Check Box control now allows a “horizontal”

mode which behave like an “on/off” slider switch (all for thick client only)

❑ Side Panels
a Side panel is a vertical panel containing clickable options or other content that
can be added to the left or right of a window, using a page pane, or scroll box; a
side panel can be shown automatically or linked to a menu control to allow it to be
opened or closed manually (for thick client only)

❑ Toast Messages for desktop apps
Toast messages are small notifications that that can be “popped” in your desktop
application to alert the end user about something; this enhancement allows you to
open toast messages in your desktop apps, via a window instance for example,
using a new $showtoast method

❑ Drag and Drop for system files
Support for dragging and dropping operating system files and file data (in the thick
client) has been simplified providing more control over files and data in your event
handling code

❑ Regular Expressions
the PCRE2 library has been added to Omnis to support regular expressions in your
Omnis code or for Find and Replace; the PCRE2 library (Perl Compatible Regular
Expressions version 2) is an open source library of functions that provides syntax
and semantics like Perl 5 for defining a search

❑ OAUTH2 Authorization and OW3 Workers
there is a new OAUTH2 Worker Object providing general support for OAUTH2
authorization for the OW3 worker objects; the HTTP, IMAP, POP3, and SMTP
workers have been modified to support OAUTH2 via the new OAUTH2 worker; plus

there are some enhancements to the IMAP, HASH, and the FTP workers

❑ OpenAPI for Web Services
Omnis now generates an OpenAPI 3.0.0 definition for a RESTful web service as
well as Swagger 2.0; OpenAPI is a more up to date version of the RESTful API
description format, and Studio 10.2 now generates OpenAPI 3.0.0 definitions, as
well as Swagger 2.0 definitions

❑ Localization for JS Client
localization for the JS Client has been optimized, reducing data size for applications
that support multiple languages by only loading language file(s) as required; plus
German, French, Italian and Spanish are supported by default, while support for
other languages can be added

❑ Omnis Datafile Migration
The DML emulator has been substantially re-written for Studio 10.2 to improve
performance; this allows you to convert an Omnis data file to either SQLite or
PostgreSQL

What’s New in Omnis Studio 10.2

30

JavaScript Components
The following new features and enhancements are for JavaScript components.

JS Client Themes and Appearance
The appearance and useability of the JavaScript components has been greatly
enhanced to help you design better and more consistent UIs, as well as improve the
accessibility for your applications created using the JS client. The enhancements
include:

❑ the introduction of color Themes, to help you apply colors consistently across your
web and mobile applications

❑ support for SVG icons which can be scaled to any size, and colored or styled using
the theme in your app

❑ the addition of animations and other visual effects to enhance the UX in your apps,
such as a ripple effect for button clicks, plus improved border highlight and shadow
effects to show the focus

❑ plus the default size of some of the components has been increased to cater to the

touch interface on tablets and phones

The appearance enhancements have been guided in part by Google’s ‘Material’ design
system, including the use of primary and secondary colors, to modernize and improve
the UI for your JS client applications.

There is a new example app under the Samples option in the Hub in the Studio
Browser called ‘JS Input Border and Button Styles’ to highlight some of the appearance
changes for Edit controls and Buttons.

JS Themes

You can now apply a consistent set of colors to components on a JavaScript remote
form by selecting colors defined in a theme – underlying a theme is a set of CSS styles
which are applied to controls at runtime in the browser. Omnis has a number themes
which you can use to style your JS client applications: a default theme, which provides
an effective and pleasing UI across all JS controls and devices, and a range of different
color themes, such as the dark theme, which provides an alternative set of darker
colors.

When designing a remote form, you can change the
current theme in the JS Theme Select dialog by pressing
Ctrl-J, or select JavaScript Theme from the View menu.
To select a theme, click on the theme preview and close
the dialog. The selected theme is applied to the current
remote form and to all the remote forms in your library

since the theme is an Omnis-wide preference.

The current theme is stored in a new Omnis root preference, $javascripttheme (in
$root.$prefs), which is set to the default theme initially, and controls which theme is

 JavaScript Components

 31

used to render themed colors for all remote forms in design mode (but you can set or

change the theme on the client using the ‘settheme’ client command; see later).

Selecting Colors

When you select the color for a JS control in design mode in the Property Manager,
you can now choose a theme color from the color picker, under the new Theme color
button in the color picker toolbar (existing users should note that the color brightness
button & setting has been removed). For example, select a button, click on the Text tab
in the Property Manager and click on the color picker for $textcolor.

The color setting for most properties, such as $textcolor, is set to kColorDefault, which
means the appropriate color from the current theme is used. If a text color property is
set to kColorDefault, and it sits on an element with a background color which comes
from a themed color constant, the text will be rendered in the associated <theme
color>Text color. For example, if a button’s $buttoncolor is set to
kJSThemeColorPrimary and its $textcolor is set to kColorDefault, the text will be
rendered using kJSThemeColorPrimaryText.

The colors defined in a theme and shown on the color picker have corresponding color
constants, whose names begin kJSThemeColor, as follows:

kJSThemeColorBackground kJSThemeColorPrimary

kJSThemeColorBackgroundText kJSThemeColorPrimaryDark

kJSThemeColorBorder kJSThemeColorPrimaryDarkText

kJSThemeColorDialog kJSThemeColorPrimaryLight

kJSThemeColorDialogText kJSThemeColorPrimaryLightText

kJSThemeColorDialogTitle kJSThemeColorPrimaryText

kJSThemeColorDialogTitleText kJSThemeColorSecondary

kJSThemeColorDisabled kJSThemeColorSecondaryDark

kJSThemeColorDisabledText kJSThemeColorSecondaryDarkText

kJSThemeColorError kJSThemeColorSecondaryLight

kJSThemeColorErrorText kJSThemeColorSecondaryLightText

kJSThemeColorFocusedRow kJSThemeColorSecondaryText

What’s New in Omnis Studio 10.2

32

kJSThemeColorFocusedRowText kJSThemeColorSurface

kJSThemeColorNeutral kJSThemeColorSurfaceText

kJSThemeColorNeutralText

Theme Editor

You can create new themes, or modify an existing theme using the JS Theme Editor,
available under the Add-Ons > Web Client Tools menu option and select JS Theme
Editor.

The editor provides a preview of the current theme on the right side of the editor
screen, and you can click on an area or text item within the preview to view or set its

color (you can also set colors by clicking in the list on the left).

The colors in a theme are categorized as Primary and Secondary, plus there are
specific color for errors, borders, dialogs, and so on. The primary colors are used
throughout your application and set the general tone or style of the theme, while the

secondary colors provide an accent to certain parts of the UI.

Creating a new theme

To create a new theme, you can duplicate an existing theme and make any changes to
the copy. To do this, open the Theme Editor, select a theme from the dropdown list or
use the default theme (selected initially by default), click on Save as and give the new
theme a name – then change individual colors and use the Save option to save any
modifications. The Set theme option sets the $javascripttheme preference to the
theme currently shown in the editor. If you make any modifications to the current

theme, all open remote forms will be updated automatically.

 JavaScript Components

 33

A theme is stored as a .json file and an associated .css file in the ‘html/themes’ folder.
When deploying your application, the themes folder and its contents must be copied to
the corresponding location on the Omnis App Server.

When designing the colors in a new theme, you may want to follow the guidance
provided by the Google Material design system, which may help you create a theme
containing colors which complement one another and provide maximum usuability and
accessibility across different platforms and devices. Google provides a Material Color
Tool which you may find useful to create a set of complementary colors for the
dark/light variants.

Themed Icons

This version of Omnis supports the use of SVG images for component icons (see the
next section in this doc regarding how to use SVG icons). For the JS client only, SVG
icons can be “themed” which means an icon will be tinted using the control’s text color
as specified in the current JS theme (the ‘fill’ color in a themed SVG file is set to the
text color from the theme). This allows a single themed SVG icon file to be used with
different themes and its color is set automatically.

Omnis includes an icon set named ‘material’ which contains over a 100 themed SVG
icons (note this icon set can only be used with the JS Client, not window classes since
they do not support themed icons). The material icon set is located in the ‘\html\icons’
folder and if you have used any of the icons in your app the icon set needs to be copied
to the Omnis App Server when deploying your application.

The following are examples of a single icon from the material icon set with different

color themes applied (note the icon is rendered using the button text color):

SVG icon files can be ‘themed’ using the SVG Themer tool under the Add Ons > Web
Client Tools menu option. You can open a single SVG file, preview it using one of the
test colors (the preview colors are not saved to the file), and save it using the Export
button.

https://material.io/resources/color
https://material.io/resources/color

What’s New in Omnis Studio 10.2

34

The SVG Themer tool converts a standard SVG image file into an Omnis themed SVG
file format: specifically, the first element in the root svg element in the original file is
converted to a ‘g element’ with fill="var(--om-tint-color)" and id ‘omTheme’ which
reference the color from the current theme. The Image Data tab shows the source for
the converted SVG file which you can edit if required, although the converter converts
the the SVG file as necessary.

(Beta testers should note that the format of themed SVGs has changed since the beta4
of Studio 10.2, so you will need to convert any SVG icons again using the release

version.)

Like other SVG icon files, any themed SVG icons need to placed in an icon set folder.
For example, you could create or acquire a set of SVG icons and convert them using
the SVG Themer tool ready for use in your JS client apps.

HTML Template & JS Client theme setting

The JS client’s theme is set in the ‘data-themename’ attribute in the omnisobject div in
the HTML file for your remote form, e.g. data-themename="dark".

The special value of “_JT_” is used in the HTML template (jsctempl.htm) which is
replaced this with the current value of $javascripttheme when Omnis generates the

HTML file for your remote form.

In addition, the 'data-appid' attribute specifies the application a page belongs to. It
defaults to '<lib name>.<form name>' each time a form is tested (the '_APPID_'
placeholder in the template .htm file is replaced when a from is tested).

Changing the Theme

You can change the theme on the JS client in your code using a new ‘settheme’ client
command ($clientcommand) which takes a row parameter whose first column is the
name of the new theme. Note that a remote form needs to be reloaded in the browser
for a change of theme to take effect. Once you have set the theme using ‘settheme’,
the client stores it in the client localStorage and will use that theme for subsequent
visits to the page. To revert back to the default theme specified in the HTML page, you
need to call the 'settheme' clientcommand, passing an empty string as the theme name
(or clear the client's localStorage).

The current theme: $construct

The current theme is passed in the $construct row parameter, in a column named

theme.

 JavaScript Components

 35

Note for existing users: active color properties

The JS client now uses a ripple effect for which the colors are generated automatically,
so the following properties are no longer relevant and have been removed from the
Property Manager (they will continue to work in existing apps):

❑ Nav bar - $buttonpressedcolor

❑ Split button - $activebackcolor

❑ Toolbar - $toolbaractivecolor

SVG Icons
You can now use SVG images for icons for JavaScript Remote Form components and
in most other places that currently support bitmap images for icons, as in previous
versions. Specifically, you can use SVG image files in an Icon set, alongside any
existing icon sets containing PNG files, and these will appear in the Select Icon dialog
when you need to assign an icon to a JS component. (You can also use SVG icons for
Window class controls, but they cannot be themed, see below.)

SVG images are vector based and are inherently scalable, therefore a single SVG file
can provide multiple sizes for icons – a single icon file will scale to fit the icon area
available in a control (unless you fix its size, see below). By contrast, component icons
in previous versions only supported PNG graphics and therefore you had to create a
separate image file for each icon size or resolution you wished to support and place all
the separate files in an icon set in the Omnis tree. In addition, a single vector-based
image will have a much smaller file size than mulitple PNG files, giving your app a
smaller footprint on the client.

Platform support

On macOS, SVG icons only render in the thick client when using macOS 10.13 or later.

On Windows, SVG icons only render when using the Windows 10 Creators Update or
later. In general, support for SVG in Windows is more limited than on macOS, for
example, Windows does not support classes in SVG files – read here about Windows

SVG support:

https://docs.microsoft.com/en-us/windows/win32/direct2d/svg-support

Creating SVG Icons

You can create your own SVG icons, or you may be able to acquire a set of icons from
a third-party, either paid-for or for free (subject to the appropriate licensing), such as
the icons provided in the Material design scheme from Google and issued under the
Apache License Version 2.0 (https://material.io/resources/icons). We have selected
over 100 of the Material icons (from the black, rounded style) and placed them in an
icon set folder called ‘material’ under the main ‘html\icons’ folder, and you are free to
use these in your Omnis applications (with the proper attribution in your product
licensing); note these Material icons have been ‘themed’ and therefore support the new
JS Themes. You can download other icons from the Material website and add them to
this folder, if required.

SVG image files must be saved with the .svg file extension (see naming below) and
should be placed in a subfolder in the ‘iconsets’ folder in the Omnis tree; the name of
the sub-folder becomes the name of the icon set, and in order to use the icons, the icon
set name needs to be added to the list of icon sets in the $iconsets preference in your

library (note $iconsets can now take a list of icon set names).

From our testing, we found that Adobe® Illustrator® allows you to export vector images
in SVG format, and on the export to SVG options dialog you can select the ‘Inline Style’
option to ensure classes are not used in the output SVG. There are many other image
editors that can output SVG.

https://docs.microsoft.com/en-us/windows/win32/direct2d/svg-support
https://material.io/resources/icons

What’s New in Omnis Studio 10.2

36

Themed Icons

In order to work with the new JS Themes, an SVG icon needs to be converted to a
Themed SVG file. Themed icons only appear in the Select Icon dialog for JavaScript
remote forms and Remote Menus (not for window classes or controls, since they do not
support themes). The Material icons in the ‘material’ icon set have been themed.

Using SVG Icons

If a JavaScript component can support SVG icons, and most do, then the icon IDs
(names) of any SVG icons will appear in the Select Icon dialog when you assign the
icon via the Property Manage and the Select Icon dialog (if a component does not
support SVG icons, then they are not shown in the Select Icon dialog).

In general, SVG icons are supported by any controls that previously required an icon,

including the following classes or features:

❑ Remote Form class components (JavaScript Client controls), including buttons,
menus, toolbars, lists, tabs, check boxes

❑ Window class controls (thick client), including menus and toolbars, together with
some external component window controls including clock, treectrl, html icon link,
hyplinks, etc.

❑ Styled text, including styled text on reports sent to the Omnis PDF report
destination

❑ The background icon for the main Omnis window on the Windows platform
($root.$prefs.$backgroundiconid)

❑ The $componenticon class property

You should note the following for JS controls only:

❑ Some JS controls use background-image CSS, so when using an SVG image, it
will not always scale as expected if the aspect ratio in the SVG is fixed, and the
desired dimensions of the background-image do not have the same aspect ratio.

❑ JS Popup menu and JS Navmenu controls have hot iconid properties – in this case,
the hot and equivalent non-hot iconid properties must either both use SVG or both
use PNG

Naming and Icon Sets

The base icon ID of an SVG icon is the name of the SVG file, without the file extension,
and converted to lower case, up to a maximum of 32 characters. The naming

restrictions for SVG icons are as follows:

❑ The base icon ID must not represent an integer (the icon ID had to be an integer for
PNGs, but does not have to be for SVG image files)

❑ The base icon ID must not contain the characters + # , ; = ? (plus, hash, comma,
semicolon, equals, or question mark); note + is used to add a size restriction, see
below

An icon ID or name can now be either an integer or a string, and integer icon IDs work
exactly as they did before (the naming of PNG icon images remains the same).

You cannot use the same file name with different case in an icon set folder, plus it’s
always good practice to make icon IDs or names unique across different icon sets,
since the icon with the first instance of a specific icon ID or name is used.

Any errors related to the naming requirements are written to the icon set log file, which

is in the folder logs/iconsets, in the data part of the Omnis tree.

 JavaScript Components

 37

Multi-state Icons

If you want to include icons for different states of a control (for example, checked,
highlighted, and checked highlighted for a check box control), you can include separate
SVG files with a suffix in their name:

❑ _c for checked

❑ _h for highlighted

❑ _ch for checked and highlighted

For example, SVG files for a check box could include the files: checkbox.svg (for the
unchecked icon), checkbox_c.svg, checkbox_h.svg and checkbox_ch.svg (for the
different states). These 4 files all result in a single icon with id ‘checkbox’, and Omnis

will select the correct SVG file according to the state of the checkbox.

Selecting an SVG icon

The Select Icon dialog has had a few modifications to support SVG icons; the screen
below shows the ‘material’ icon set. When you select an icon set containing SVG icons,
the page list in the dialog shows an entry for standard sizes, and a full-page entry for
each individual SVG icon. The standard sizes include all the SVG icons in the set,
since SVG images will scale to any size. When you select a full page SVG icon, the
first line of the size list shows the default size read from the SVG file (converted to
Omnis design pixels), with the text (kDefSize) appended to it.

What’s New in Omnis Studio 10.2

38

The select icon dialog has a new status bar area that shows the type of icon (PNG,
SVG, Themed SVG or Icon page entry), and the ID (name) of the icon.

There is a Search box on the Select Icon dialog that allows you to search for an icon or
filter the icons shown using the icon ID or name.

Fixed and Custom Icon Sizes

An SVG icon will always expand to fit the available space within a control, but it is
possible to fix or restrict the size of an icon by adding size information to the end of the
icon ID name. The size information has the syntax +<w>x<h> where <w> is the integer
width and <h> is the integer height. For example, an SVG icon ID could be any of the
following:

❑ testsvg (unrestricted size)

❑ testsvg+16x16 (restricted to 16x16, for example, for a menu)

❑ testsvg+32x48 (restricted to 32 wide x 48 high)

When selecting an SVG icon, the size list includes the configured sizes from
config.json, and the current size of the icon, in addition to the standard sizes and
kDefSize. There is a + button in the heading of the size list that allows you add a new
size. There is an option on the dialog to add the new size to config.json.

 JavaScript Components

 39

There is a new configuration item called ‘customSizes’ in the ‘svg’ section of config.json
that allows you to add other sizes. The size list in the Select Icon dialog will show any
other sizes specified in the config.json file:
"svg": {

 "customSizes": [

 "256x256",

 "64x64",

 "128x128"

]

 }

When a custom size is selected in the size list for a full page SVG icon, in addition to
the + button, there is a - button which you can use to remove the size from the list, and

optionally remove it from config.json.

Omnis uses the default width and height specified in an SVG file to determine the
aspect ratio of the icon image. To obtain this, Omnis looks for the width and height
attributes of the svg element in the SVG file and uses these if present. If width and
height are not present, Omnis uses the viewBox attribute of the svg element to
determine the aspect ratio. In this case, you can add a size using the + button in the
Select Icon dialog, and use the Keep Aspect Ratio option, to fix the aspect ratio.

Icons for Lists

Certain controls, such as the Icon Array, use a list column to contain an icon ID. To
make use of SVG icons, this column now needs to be defined as Character. Where you
use a mixture of SVG icons and existing icons, the icon IDs can be specified as strings
or integers as appropriate.

Icon Caching

Prior to this version, Omnis cached every icon set icon in memory, as bitmaps. To
handle SVG support, you can now control the cache size for all icon sets (using PNG
and SVG icon image files). There is a new entry in the ‘defaults’ section of config.json
called maxCachedIconSetBitmaps. This is an integer, which defaults to 1000 bitmaps.
If Omnis needs to create a new bitmap for an icon from an icon set, and the current
number of cached bitmaps is at this limit, Omnis will free up the least recently used

bitmap.

Multiple Icon sets

In addition to support for SVG icons, you can now specify multiple icon sets for a
library. Therefore, the $iconset library preference has been renamed to $iconsets, and
can now accept a comma-separated list of icon set folder names, or a single icon set
name as before. The icon set folders are searched in the order specified in the
property, followed by the Studio icon set, then the library #ICONS system class, and
finally the icon data files Omnispic and Userpic.

Icon Search order

The Select Icon dialog now shows icon sets in the order in which they will be searched
when an icon is referenced. If there is a duplicate icon name, then a component or
window control will display the first icon found by the search. The Select Icon dialog will
show the icon from each icon set even if the icon will be overridden by the search
order.

During SCAF generation, for the serverless client, the Omnis Server now passes all the
files for all icon sets in $iconsets to the serverless client library.

Multi-state Icons

The Select Icon dialog will now only display multi-state icons for controls that require a
multi-state icon, such as check boxes. In addition, there is a check box on the Select

Icon dialog so you can display the multi-state icons only.

What’s New in Omnis Studio 10.2

40

JSON Export-Import

The new icon ID syntax is handled when exporting a class to JSON, and importing

JSON to a class.

There are new flags specified in property tables to identify icon ID properties that
support SVG icons. For the thick client, the flag is PROP_SVG, and for external
components, the flag is EXTD_EFLAG_SVG.

Icon APIs

The bitmap APIs for both the core and external components now have overloads that
accept a fldval or EXTfldval respectively, to represent an icon ID that can be either an
integer or a string.

Position Assistance
Position Assistance provides visual guides (colored arrows and dashed lines) that
enable you to easily align and distribute controls and other objects in a design window,
that is, when you move or resize objects using the mouse or trackpad. The new
position assistance is available when positioning objects in a JS Remote form, a
window class, or in the report editor.

As you move or resize objects on a remote form (or report or window), colored lines are
shown automatically, and objects will snap into position to help you arrange the objects
in a form. Position Assistance is also provided when you use the Arrow keys to position
or resize objects.

The context menu for the remote form (or report or window) has a new entry after the
Align hierarchical menu, “Show Position Assistance”, which toggles the new Position
Assistance (default is enabled). There is a single setting for this, shared by all editors,
that is saved to omnis.cfg when Omnis shuts down.

Position Assistance for sizing does not apply when Size to Grid is turned on, and for

moving, it does not apply when Align to Grid is turned on.

The positioning lines are drawn using the colorhighlight color in the system group of
appearance.json. There is a new entry positionAssistantKeyboardTimer, in the ide
section of the config.json, that can be used to adjust the time that the position
assistance remains visible after you stop pressing an arrow key; this defaults to 750
milliseconds.

Positioning & Aligning Objects

When the Position Assistance is enabled, Omnis gives precedence to distribution over
alignment, and within alignment it prioritises the top edge, over the center, and the
center over the right edge. As soon as a visual guide is displayed for a target, any other
targets that would also cause the object to move in the same axis are dropped.

As you move or size objects Omnis displays a visual guide when the object(s) being
moved or sized are within +/-2 pixels of a specific alignment or distribution target, e.g.
an alignment target is the top edge of another object or objects. When you release the
mouse, the objects snap to the displayed target. Position Assistance is applied to
objects dragged from the Component Store, as well as objects being moved or sized

 JavaScript Components

 41

within a design window. Position Assistance is provided when moving an object even if

the adjacent objects are contained inside a container field.

When sizing objects, assistance is not provided if the objects being sized have more
than a single container, that is, the component that is the parent of the objects – this
can be more granular than a field, such as for complex grids, there are several

containers such as the row and header sections.

Distribution

Position Assistance attempts to distribute objects by allowing them to be evenly
spaced. The visual guide for distribution is a line drawn between the objects with arrow
heads.

The guides are drawn for as many objects as possible, immediately adjacent to the
object(s) being moved or sized. Position Assistance works best when objects are
already reasonably well arranged, either vertically or horizontally, so for more complex
arrangements, with overlapping fields may result in no visual guides being presented.

Alignment

Position Assistance attempts to align objects by giving them the same top or bottom
coordinate, or centered relative to each other. When you try to center objects, you only
get visual guides when moving objects, and when the appropriate side of the rectangle
representing the objects being moved either fully encloses or is fully enclosed by the
appropriate side of the object in which it is being centered. The following illustrate how

the Position Assistance is applied for different cases when aligning objects.

Top alignment Bottom alignment

Left alignment Right alignment

What’s New in Omnis Studio 10.2

42

Positioning for Paged Panes (Container fields)

Assistance is provided to help you align fields inside a container field, such as a Paged
Pane. In addition to the left/right, top/bottom positioning, when you move an object
inside and near to the center of a container, a line across either the vertical or
horizontal center of the container is drawn and the object will snap to the line.

When positioning objects inside a Paged Pane (or any container), Position Assistance
is only provided for the controls within the Paged Pane itself, so objects outside the
Paged Pane are not included in the current object grouping. Similarly, if you are
positioning objects outside, but near to a Paged Pane, the objects inside the Paged
Pane are not included in the current grouping.

Positioning for Complex Grids

Position Assistance is provided within each section of a Complex Grid, that is, the row
and header sections of a Complex Grid, and the above behavior for container fields
applies to each section independently.

Position Assistance for Reports

Position Assistance is available for fields and controls when designing a report,
however the behavior is different for non-floating report fields. When moving or sizing
objects in the report editor, Position Assistance is not provided for the vertical axis if
any of the objects being moved or sized are not floating.

Remote Form Design
When you create or modify a JavaScript Remote form class the form design window is
now displayed in a Web Preview (using the Chromium built-in web browser), so you
can see exactly how your form will look at runtime in the end user’s web browser.
Specifically, JavaScript controls (and JSON-defined controls) will now look the same in
design mode as they will do at runtime in a web browser, including the visual effect of
any CSS styles you have applied to the controls (using $cssclassname). In addition,
your remote form and its controls will be displayed using the current JavaScript theme.

There is a new folder in the ‘html’ folder named ‘design’, in which the HTML for remote
form design mode is generated; note this folder is only for design mode and is not

required when you deploy your application.

Note to Existing users: Using old design mode

Existing users should note that there are a few differences between the new Web
Preview mode for remote forms and the old design mode, as follows:

❑ There is no design grid available in the new Web preview mode, so $showgrid is

not present ($showgrid is not available if you switch to the old design mode).

❑ Rulers are not supported in the new Web preview mode, so the remote form
context menu does not have an option to show Rulers.

❑ Design DPI scaling does not apply in in the new Web preview mode.

❑ The JS client now uses box-sizing border-box, so the appearance of control
borders may be different.

 JavaScript Components

 43

❑ It is possible an exception will occur in the JS client running in the new Web
preview mode: this does not have any effect on the validity of the remote form
class. If this occurs, a message will be displayed for 5 seconds, and the error will
also be logged to the trace log. In this case, you should close and re-open the
editor after an exception.

You can revert to the old design mode for remote forms, either by holding the Shift key
down when opening a remote form in design mode, or by changing the config.json
entry ‘useObrowserForRemoteFormDesign’ in the ide section.

HTML control

The HTML control has a new property, $showruntimepreview, which defaults to kTrue,
which ensures the HTML is rendered in the remote form rather than showing the HTML
code text. If $showruntimepreview is false, the HTML code text is shown, but it cannot
be scrolled inside the control in the design window.

JS Split Button Control
The Split Button control is a new JavaScript component: it combines a standard button
with a dropdown menu, allowing you to provide multiple, alternate actions grouped
together in a single button control. The Split Button is like the Send button in gmail as it
provides two options in one control: a default Send option on the button and a
Schedule send option via the menu.

The component is available for JavaScript remote forms as well as window classes, but
there are some additional properties for the JavaScript control; note the split button for
window classes is an external component which must be loaded via the External
Components option on the Component Store.

The menu for the control is specified in the $menuname property and must be a
Remote Menu class for the JavaScript component, or a menu class for the Window
class control.

The following example Split button has a Print option and a printer icon on the main
button part, and it has options for printing to a Preview, PDF or File specified in a
Remote menu class specified in the $menuname property of the button control. In this
case, a single click on the button would activate the Print to printer option, while
clicking on the down arrow provides the other options (the images uses the

‘professional’ JS Theme).

What’s New in Omnis Studio 10.2

44

Properties

The following properties are available for both the JS Remote form and Window class
controls.

Property Description

$hotbackcolor The background color of the control when hovered

$activebackcolor The background color of the control while pressed;
active color is generated automatically if

$activebackcolor is kColorDefault

$buttonborderradius The radius in pixels of the corners

$borderwidth The width (0-7) of the edges drawn as the border of the
control

$arrowside The position of the dropdown button on the control

$textbeforeicon If true, and the control has both text and an icon, the
text is drawn before the icon

$vertical If true, the text and icon are arranged vertically

$menuname The name of the menu class, a Remote Menu class for
the JS control, or a Menu class for the Window control

The following properties are available for the JavaScript control only.

Property Description

$menubackcolor The background color of menu lines

$menuhotbackcolor The background color of menu lines when hovered

$menutextcolor The text color of menu lines

$menuhottextcolor The text color of menu lines when hovered

$menudisabledtextcolor The text color of disabled menu lines

Events

An evClick event is triggered when the main button area is pressed. In addition, for the
JavaScript client only, the evOpenContextMenu and evExecuteContextMenu events
are generated when the menu is pressed and in this case the pControlMenu event
parameter is kTrue (when a Context menu is opened pControlMenu will be kFalse).

JS Edit Control
Input Masks

Support for input masks has been added to JS Edit controls with the addition of the
$inputmask property: this allows you to use a custom input mask string to control user
input on a character level in data entry fields in a remote form. If the user enters an
invalid character, the control will briefly become highlighted and the input will be
rejected. For edit fields of character type, the data variable will contain mask
characters. For number/integer fields, the data is the unmasked number value.

As a consequence of adding $inputmask, there is a new system class #JSMASKS that
stores the input masks for JS Edit controls for the library, and a new
$javascriptinputmasks notation group.

There are a number of differences between the existing Masked entry field on the thick

client and the new input masks for JS Edit controls:

❑ On the thick client, the user must complete the masked entry field before focus can
leave the field. This is not the case with JS masked edit fields - fields can be left
partially filled.

❑ JS input masks do not support any of the 'control characters' which can be used on
the thick client.

 JavaScript Components

 45

❑ The JS edit control does not have a $formatstring property (like the thick client

masked entry field).

❑ The JS edit control has two unique properties: $inputmaskguide and
$maskvaluevalid.

❑ JS input masks can be changed dynamically as the user types using the

$processmask client method.

❑ There is visual feedback when entering invalid characters in a masked JS edit field.

$inputmask

The value of $inputmask may contain a combination of fixed and special characters.

Note that underscores cannot be used as these are used as placeholders.

Special character Description

Any digit

@ Any character

a Any letter

A Any uppercase letter

n Alphanumeric

N Alphanumeric, uppercase

“ABC" Any character from list

“A-D" Any character from A to D inclusive

\ (back slash) Escape character (next character is
displayed literally, use to escape special mask

characters, double quotes or backslash)

$inputmaskguide

The $inputmaskguide boolean property controls whether or not a guide is shown. If
true, placeholder and non-placeholder mask characters are always displayed. If false,
placeholder characters are hidden, and mask characters are only shown when the user
reaches them as they type. The property is false by default.

$maskvaluevalid

The $maskvaluevalid property is a boolean, read only, runtime only property. A value of

kTrue indicates that the field is completed, and therefore valid.

$processmask

A client method named $processmask can optionally be added to an edit control. This
allows the mask to be changed as the user types. The method is called any time the
value in the field changes, and receives a parameter pInput which contains the user
input. Note that the user input parameter could contain anything as the event is sent
before mask validation occurs (the mask needs to be updated before it can validate
input). As a general use case, $processmask could be used to create the effect of

optional characters.

Horizontal padding

When a library is converted to Studio 10.2, the $horzpadding property for all JS Edit
controls will be set to 4 automatically if they were previously set to 0, which is the
default for all new Edit controls; if $horzpadding is set to any other value it is not

changed. After conversion, you can change the value of $horzpadding.

Vertical padding

The $vertpadding property has been added to the JS Edit control which allows you to
add vertical padding to the text inside the control’s border. The new property only
applies when $issingleline=kFalse as single line edit controls are vertically centered.

What’s New in Omnis Studio 10.2

46

JS Date Picker
Mode & Popup Style Properties

There are two new properties controlling the style of the Date Picker control. The
$datepickermode and $datepickerpopupstyle properties control the mode (style) and
popup style (positioning) of the date picker displayed when a date is entered into an
Edit field (also applies to data grid cells and columns).

❑ $datepickermode
controls the type of picker to be displayed, one of the following constants:
kJSDatePickerModeAuto: Date picker type is assigned automatically based on
$dateformat
kJSDatePickerModeCalendar: calendar type is displayed

kJSDatePickerModePicker: a picker type is displayed

❑ $datepickerpopupstyle
controls how the popup will be displayed, one of the following constants:
kJSDatePickerPopupStyleAuto: Popup style will be determined by device type
kJSDatePickerPopupStyleInline: Popup style will always be displayed adjacent to
the control
kJSDatePickerPopupStyleModal: Popup style will always be displayed modal

(Note that Internet Explorer does not correctly display the modal type, and so falls back

to inline on these clients.)

The inline style picker will position itself underneath the parent control, but from the
right so it is closer to the icon which opens it. If there is not enough space beneath the
parent control, the picker will be placed above, where space permits.

In addition, Data Grids have the new $datepickermode and $datepickerpopupstyle
properties, as well as $columndatepickermode and $columndatepickerpopupstyle. The
latter two work in the same way, but on the given column when $userdefined = true.

JS Data Grid
Tabbing through cells

The property $tabthroughcells has been added to JS data grids to change the action of
the tab key while the focus is on the grid; it is set to kFalse by default. If set to kTrue,
tabbing from a cell which is not being edited selects the next cell, or Shift+tab selects
the previous cell. In addition, setting $hcell or $vcell now triggers edit mode if
$autoedit=kTrue.

Column header height

The JS Data grid has a new property, $columnheaderheight, that specifies the height in
pixels of the column header area. If set to 0 (the default) the header height will be the
same as $rowheight.

Column header line breaks

You can now create multi-line column headers in a JS Data grid using a line break. You

can use \n in the text for $columnnames to create a line break.

evCellValueChanged & pHorzCell

The pHorzCell event parameter of evCellValueChanged now references the column of
the grid control itself, rather than the column of the data list belonging to the data grid
as in previous versions. This has consequences for grids in which $columndatacol is

used to map columns and you may need to change your code accordingly.

pDataColumnName

A new event parameter pDataColumnName has been added to the JS Data Grid
events evClick, evDoubleClick, evCellChanged, and evCellValueChanged. The new
parameter contains the data list column name (or number) when the event is triggered.

 JavaScript Components

 47

This is useful when columns in the data list do not map directly to the columns of the

form data grid (that is, if $columndatacol is used to set the column order.

If the list column does not have a name, the parameter contains 'C1', 'C2', etc, so it can
be used notationally. The value of the cell can be obtained with:
iDataList.[pVertCell].[pDataColumnName].

Open Filter Method

The data grid has a new client-executed method $openfilter which can be called from
$init to allow you to open the filter area in the grid when the form is opened.

❑ $openfilter([bOpen])
opens or closes the filter area if the grid has one, and returns kTrue if the operation
was completed. bOpen: Use kTrue to open the filter area or kFalse to close it.
Defaults to kTrue if unspecified.

JS List Control
Line Selection

The behavior for multi-select lists has changed when selecting and de-selecting list
lines and when the Shift key is pressed. The change applies to all lists including the
standard JS List control, Data Grid, Tree list, and Native List, when multiple line
selection is enabled.

In addition, the $keyboardchangesline property now takes effect when $multipleselect
is kTrue (Data Grid and Tree list only). In previous versions, when both properties were
set to kTrue, $keyboardchangesline did not have any effect regardless of its state. This
was so non-adjacent lines could be selected with the keyboard. This change allows
multiple rows to be selected while also having the keyboard change the current line. To
enable users to select non-adjacent lines with the keyboard, $keyboardchangesline

can be set to kFalse.

JS Device Control
Multiple SMS recipients

You can now send a SMS to multiple recipients by assigning a comma-separated list of
phone numbers to $communicationaddress. For example:
Do cinst.$objs.device.$communicationaddress.$assign(

 "0123456789,0987654321,0192837465")

Remember that the Device control only works when it is contained in a JavaScript

wrapper.

Image Aspect Ratio

The JS Device control has a new property, $imageaspect, to allow the aspect ratio of a
photo to be specified; it only affects images taken with the kJSDeviceActionTakePhoto
device action (not GetImage). This functionality is only available in the iOS and Android
wrappers, version 3.1.0 & later; also note the minimum Android version is now API21
(5.0, Lollipop).

The $imageaspect property takes a floating number, indicating width divided by height.
If set to 0, no aspect ratio will be enforced, and the standard camera application will be
used for taking photos. If greater than zero, a custom camera view within the app will
be used, which shows the preview stream in the specified aspect ratio, and an image of
the specified aspect will be returned. A value of 1 will enforce a square image.

The $imageaspect property can be used in conjunction with $imagemegapixel to take
an image of specific dimensions, that is:

$imageaspect = targetWidth / targetHeight

$imagemegapixel = (targetWidth * targetHeight) / 1,000,000

The device control also has a new client-executed method, $takephoto(iWidth, iHeight)
to provide a shorthand way of taking a photo with specific dimensions.

What’s New in Omnis Studio 10.2

48

JS Droplist & Combo box
$extraspace

The $extraspace property has been added to both the JS Droplist and JS Combo box.
The property is a number of pixels (>= 0) that adds extra space to the lines in the
dropped list box. (Note $extraspace also applies to JS List control, Tree list, and
Hyperlink controls.)

If $extraspace is zero, the height of each row is the default height of the row content. If
$extraspace is greater than zero, the height of each row is the font height +
$extraspace.

$borderstyle
The $borderstyle property for Droplists, Combo boxes (and JS Edit controls) has been
renamed to $inputborderstyle, and is a kJSInputBorderStyle… constant that controls
the appearance of kJSborderDefault, and which specifies the appearance of the control
border when the control has the focus.

JS Complex Grid
Scrollable footer

The Complex Grid control can now include a scrollable footer section similar to the
existing scrolling header section (this is also available in the window class complex grid

control).

To enable a scrollable horizontal footer, you need to set $showhorzfooter to true. The
complex grid has the following properties to control the appearance of the footer:

❑ $horzfooterheight

The height of the grid horizontal footer

❑ $horzfooterfillcolor
The fill color for the grid horizontal footer

❑ $horzfooterborder

The border style for the grid horizontal footer

❑ $horzfooterlinestyle
The line style for the grid horizontal footer

Resize Row Animation

When you resize a row in a Complex Grid, you can now specify an animation type and
duration for the resizing action. The method $setrowheight(...) now takes two additional
optional parameters: an ease constant, such as kAnimationCurveEaseOut, and a
duration in milliseconds for the animation.

JS Tree Lists
JS Tree lists have a new event, evExpandNode, which is fired after the user has
expanded a node, every time that node is expanded (unlike evLoadNode which is only
triggered if the node has no children). This applies to both dynamic and non-dynamic
tree lists.

You cannot use $nodedata to load data into the tree list with this new event, it is just a
notification and includes the parameters pNodeIdent and pNodeTag. If evLoadNode
and evExpandNode are both active, evLoadNode will be fired first, as evExpandNode
is fired after the node is expanded.

JS Button
Border Appearance

The JS Button control has a new property, $borderwidth, that specifies the border width
in pixels (the default is 0 or no border). You can set the border color using

$bordercolor.

 JavaScript Components

 49

Flat button style

The style for all new buttons (and buttons in converted libraries) is now flat, so $isflat is
set to true. In addition, if the value of $buttonborderradius in converted libraries is set to
0, it will now be changed to the new default of 4; any other value will be retained on
conversion.

Disabled appearance

The appearance for disabled buttons has been improved, that is, when $active
becomes kfalse. If $isflat is kTrue (the default), the button back color will become
transparent (if it isn't already) and the text color will take on the disabledText color. If
$isflat is kFalse, the button back color will take on the disabled color and the button text
color will take on the disabledText color.

In addition, if $bordercolor for buttons is set to kColorDefault the color will match
$textcolor. When disabled ($active = kFalse), the border will match the disabled text
color to maintain a consistent disabled appearance.

JS Bar & Pie Charts
Theme Colors

You can now specify theme colors and explicit RGB integer colors for JS Bar chart &

Pie chart segments.

The $colorlist runtime-only property can now contain kJSThemeColor... constants to
allow you to match the colors in the current theme. In addition, you can specify an RGB
integer using the rgb() function.

Note you cannot use standard Omnis color constants (such as kRed, etc.) in this
context, since these are taken as literal text on the client.

Text and Axis Colors

The $textcolor and $axiscolor properties have been added to Bar Charts (Pie charts
had $textcolor in previous versions). Both controls now use theme colors for this
$textcolor which applies to the color of the title, labels, axis text, and legend in the
chart, where applicable.

The $axiscolor property for a Bar chart applies to the color of the both axes lines, and
the unit lines which run across the bar chart.

When set to kColorDefault, both properties will set their color dynamically according to
the color of $backcolor.

In addition for Bar charts, when $showvalue=kTrue, the popup label will use $backcolor
for the text and $textcolor for the background of the label so that it can be seen against

the background of the control.

JS Tab Control, JS Segmented & JS Page Control
Current Tab, Segment & Page color

The properties $currenttabindicatorcolor, $focusedsegmentindicatorcolor, and
$currentpageindicatorcolor have been added to the JS Tab controls, JS Segmented,
and JS Page Control respectively, which are colors to indicate the current tab,

segment, or page.

JS Popup Menu
Line Height

A new property $menulineheight has been added to remote forms to control the line
height for all the menus in a remote form, including context menus and menus
belonging to controls such as Popup, Tab strip and Splitbutton.

What’s New in Omnis Studio 10.2

50

For existing applications, the value of $menulineheight will be zero, meaning the font
size will determine the line height, as previous versions. For new applications, this will
be a touch-friendly value to give enough space for each menu option.

JS Check Box, Radio Group & Switch
Color properties have been added to the JS Check box, Radio group and Switch
controls so you can set their colors; note these can be theme colours so will change

with a change of theme.

❑ $checkboxcolor
Color for the Check box control, and check boxes when they appear in Lists, Data
grids & Tree lists.

❑ $radiobuttoncolor
Color for the Radio group control.

❑ $switchcolor
The $switchcolor property specifies the color for the Switch control when it is

switched on (set to value 1), assuming no on/off icons have been set.

Event Method Validation
Omnis now validates the event codes you have entered when adding or editing On
event commands in the Code Editor. Therefore, Omnis will check to see if the event
code is valid for the current object, and if not, it will flag it as an error.

For remote forms, if the event is not specified in the $events property, Omnis will add it
to $events automatically when editing a method named $event in a non-inherited object
(Omnis displays a temporary status bar message when it does this).

You can turn off this validation using the validateEventsForOnCommand entry in the

methodEditor group of config.json; set it to false to turn off event method validation.

Tab Order
All JS components now have a $taborder property in design mode (which is read-only)
which shows the resolved tab order within the form, taking into account container fields,
such as paged panes.

The context menu on a remote form includes the "Show $taborder" option (previously it
was "Show $order"), so that you can see the value of $taborder for all controls on the
form.

You can still alter the tab order of the controls in a form by modifying $order for each

control.

The $inheritedorder property has been removed from the Property Manager for remote
forms (it is still shown in the Notation Inspector for remote forms).

This property is set to zero by default and you are recommended to keep it set to zero

which means that the designed order from the base class will be maintained.

Next Tab Object

All JS Components now have a property $nexttabobject which allows you to override
the default tab order set by the $order property for all the controls in a remote form.
The $nexttabobject property allows you to specify the name ($name) of the control you
want the end user to tab to after the current object, overriding the tab order set by
$order. You should not overuse this property, as it does incur some overhead by
setting up additional event listeners.

Paged Pane
The behavior of the evUserChangedPage event has been modified. When the Paged
Pane is linked to a Tab bar control, the evUserChangedPage event is triggered in the

paged pane control when a tab is clicked to change the pane.

 JavaScript Forms

 51

Control-level Return Methods
Support for control-level Return methods has been added. In previous versions, you
were able to create a _return method in the remote form to return a value from the
server to the client (you create a '$serverMethod_return' client-executed method in the
form to receive the value returned from the server). Now you can create such return
methods for controls (fields).

If a client-executed method calls a server-executed method on a control, when
execution returns to the client, Omnis will look for the ‘$serverMethod_return' method
on the control, and if not found it will look for the return method at the form level, as in
previous versions.

JS Control Variable Names
The Property Manager now displays an error message when you try to assign an
invalid data name property for a JS client object. This applies to $dataname as well as
other similar properties such as $listname which require a variable.

Property Values in Client Methods
You can only read the value of a property in a JS client form/control instance when
running in a client-executed method. The error reporting has been improved if you try
to do this from a server-executed method. The improved error message when trying to
read a remote form instance property on the server is now: "Cannot get the value of a
remote form instance property when executing code on the server".

JavaScript Forms
The following new features and enhancements are for JavaScript Remote forms.

Subforms
Subform Dialogs

Two new client commands have been added to remote forms to allow you to open a
single subform as a modal dialog: subformdialogshow opens the modal subform

dialog, and subformdialogclose closes the topmost subform dialog.

The “subformdialogshow” command opens a single subform as a modal dialog.

Do $cinst.$clientcommand("subformdialogshow ",row)

Where row is row(classname, params, title, width, height, closeButton, resizable,

maxButton, openMax). The parameters are as follows:

❑ classname
String, the name of the remoteform

❑ params

String, literals to pass to the subform

❑ title
String, the title of the modal dialog

❑ width
Integer
the width of the dialog

❑ height
Integer, the height of the dialog

❑ [closeButton]
Boolean, defaults to true, show close button

❑ [resizable]
Boolean, defaults to false, if true allows resizing

What’s New in Omnis Studio 10.2

52

❑ [maxButton]
Boolean, defaults to false, if true shows maximize button (resizable must be set to
true)

❑ [openMax]
Boolean, defaults to false, if true opens dialog in a maximized state (resizable must

be set to true)

This command generates a new subform set and adds one modal subform to it. The
name of this set is internal only, and cannot be added to or removed from. Another
modal subform dialog can be opened above the previous one by running subsequent

calls, preventing access to the first one until the second is closed.

The ”subformdialogclose” command closes the topmost subform dialog. This
command only works for subforms opened using the subformdialogshow command,
and has no parameters as such modal dialogs must be closed in reverse order of them

opening.

Subform Dimensions List

When you open a set of subforms in a subform set using the subformset_formadd
client command, you can now pass dimensions for the subforms for each breakpoint in
a responsive remote form; in previous versions you could only provide one set of

dimensions.

A list can now be passed instead of the single set of left, top, width, height parameters
in the subform client commands providing values for as many breakpoints as required.
This works in both the formlist contained within the "subformset_add" and the individual
"subformset_formadd" client commands. The same method applies to both client
commands, but the example below shows directly adding a form with
"subformset_formadd":
Do lDimList.$define(lBreakpoint,lLeft,lTop,lWidth,lHeight)

Do lDimList.$add(310,10,10,200,200)

Do lDimList.$add(600,kSFScenter,kSFScenter,300,300)

Do lDimList.$add(1000,kSFScenter,kSFScenter,600,600)

Do $cinst.$clientcommand(

 "subformset_formadd",row(

 cSetName,vUniqueID,cParams,cTitle,lDimList,iModal))

Note that the new dimensions list has replaced 4 separate parameters, and so has
condensed the command to a minimum of 5 parameters (6 if passing a value for
iModal). You can pass the parameter list accepted in previous versions or the new style
list. However, this only works for responsive forms, whereas single and screen type
forms must use the original set of parameters to avoid confusion.

The client will use the value passed in lBreakpoint to assign the values to the correct
breakpoint for the containing form. If the breakpoints do not match, then the values will
be used from the next breakpoint down. For example, if you had the list of dimensions
as defined above, but your form used the following breakpoints:

310 - would use the values from 310 as they match

590 - this is smaller than the next value of 600, so would again use the values from 310

900 - this is smaller than the next value of 1000, so would use the values from 600

1200 - this is greater than the values from 1000, so uses those values.

$loadfinished method

The $loadfinished method has been added to remote forms to allow you to check when
all subforms of a form have been loaded. The client-executed method is called after all
the subforms that belong to the parent remote form instance have finished loading and
their $init methods have been called, so you could create a client method called
$loadfinished to perform any actions you want after all subforms have loaded.

 JavaScript Forms

 53

Control Menus
The pControlMenu event parameter has been added to the evOpenContextMenu and
evExecuteContextMenu events to distinguish between events generated by a Control
menu or a Context menu opened when clicking on the control.

All controls with a menu (Tab, Popup menu, and the new Split button) generate
evOpenContextMenu and evExecuteContextMenu when using their own menus. To
distinguish between Control menus and Context menus, a new boolean parameter,
pControlMenu, has been added to both these events for all controls; pControlMenu is
kTrue if the menu is a control menu, or kFalse if it is a context menu (JavaScript client
only).

The pControlMenu event parameter has been added to the evOpenContextMenu and
evExecuteContextMenu events generated by the Split Button control to allow you to
detect events in the Control menu.

Form Layout Type
When designing a remote form, if you change $layouttype to kLayoutTypeSingle, and
the $resizemode property is set to kJSformResizeModeNone, then $resizemode will be
set to kJSformResizeModeFull automatically to make it resizble.

Remote Tasks: $order
The $order property for remote tasks is not new but there was not an adequate
description of the property in previous versions, so the property description and online

help for $order of a remote task instance have both been updated, as follows.

$order is an integer that uniquely identifies the remote task instance within the lifetime
of the Omnis Server (since it was started). The value will not be re-used for a different
remote task until the Omnis Server is restarted. Also, values are unlikely to be

incremental.

PDF Printing
In previous versions, the Python files that are used to print a report to PDF were
discarded. A new option kDevOmnisPDFParamKeepScriptAndPNGs has been added
for the PDF device to allow you to keep the Python script and PNGs after printing to
PDF. Use this constant with $cdevice.$setparam as the parameter number of the keep
Python script and PNGs device parameter.

Runtime & Server Logging
There is a new Library preference, $clib.$prefs.$alwayslog (defaults to kFalse) to allow
you to log messages in the Runtime and Server versions of Omnis to help you debug
your code. When kTrue, the Send to trace log command and tracelog() function always
write non-diagnostic messages to the trace log (overriding the check for debuggable
code). In previous versions, the trace log recorded such messages in the Development
version only.

What’s New in Omnis Studio 10.2

54

Method Editor
The following new features and enhancements are for the Method Editor and Code

Editor.

Code Folding
The Code Editor now supports Code folding which means you can fold and unfold
(collapse and expand) blocks of code in order to assist with readability and code
manipulation in general. If a code block can be folded, a ‘-‘ icon appears in the margin
at the start of the block: when a block has been folded a ‘+’ icon is shown next to the
first line of the block, and directly under this is shown a “badge” (an ellipsis icon)
representing the hidden code content.

The Code Editor shows a fold icon () in the left margin which shows that a code block
can be folded: you can click on the icon to fold the block, and the icon will toggle to
show an unfold icon () to show that the block can be unfolded. For example, this is a
code line before code folding:

When the mouse is over the fold icon, Omnis highlights the block that will be folded, for

example:

After you have clicked the fold icon, and the code has been folded, the content is
shown as a badge (ellipsis) representing the content of the folded block:

When the mouse is over the badge icon, Omnis displays a tooltip to show its content
(this is like the method content tooltips already in Studio 10.1), but note that this tooltip
is always displayed, irrespective of the Show Method Content Tips option. For
example:

Just like method content tips, pressing the Shift key while the tooltip is displayed locks
it in place until you remove the Shift key and move the mouse away. You can select the
text in the tooltip and copy it to the clipboard.

You can also press the Control (Windows) or Command (macOS) key while the mouse
is over a fold or unfold icon. In this case, if the command has multiple blocks that can

 Method Editor

 55

be folded or unfolded, Omnis highlights all the affected blocks, and pressing the fold or
unfold icon while all blocks are highlighted opens or closes all the highlighted blocks.
For example:

Code folding is only available in a block when there are at least two method lines: for a
block that has a single line only, folding is not enabled for the block, so the folding

icons are not shown, and the options in the folding menu are disabled.

Which Commands can be folded?

The following Omnis commands can be folded:

❑ All If commands, folded until the next Else, Else If or End If command in the same
block.

❑ Else, folded until the next End If command in the same block.

❑ All Else If commands, folded until the next Else, Else If or End If command in the
same block.

❑ All While commands, folded until the terminating End While command of the block.

❑ Both For commands, folded until the terminating End For command of the block.

❑ Repeat, folded until the terminating Until… command of the block.

❑ Switch, folded until the terminating End Switch command of the block.

❑ Case, folded until the next Case, Default or End Switch command in the same

block.

❑ Default, folded until the next Case, Default or End Switch command in the same
block.

❑ Begin reversible block, folded until the terminating End reversible block command

of the block.

❑ Begin critical block, folded until the terminating End critical block command of the
block.

❑ On and On default, folded until the next On or On default command, or the end of

the method if there is no such command.

Code folding menu

In addition to using the fold or unfold icons in the left margin, you can use the
fold/unfold options on a new Code folding menu, that can be used when the code editor
has the focus. In this case, most of the menu items apply to the block containing the

single line of code that is currently selected.

The Code folding menu is present on the Modify menu of the Method Editor and the
Remote Debugger window for a remote debugger edit session. For a remote debugger
debug session, there is a new Code menu on the toolbar, containing the Code folding

menu commands.

The menu commands are:

Menu command Description

Fold Block Equivalent to pressing the Fold icon to fold the block.

What’s New in Omnis Studio 10.2

56

Fold Block And Related
Blocks

Equivalent to pressing the Fold icon while holding the Control
(Windows) or Command (macOS) key to fold the block and
other related blocks that can be folded.

Unfold Block Equivalent to pressing the Unfold icon to unfold the block.

Unfold Block And
Related Blocks

Equivalent to pressing the Unfold icon while holding the
Control (Windows) or Command (macOS) key to unfold the
block and other related blocks that can be unfolded.

Unfold All Blocks Unfolds all folded blocks in the method.

The menu items also have shortcuts:

Windows macOS

You can configure the keys for these shortcuts using the keys preference item, in the

methodEditorAndRemoteDebugger group (in the keys.json file):

Preference item Key(s)

codeFold Opt + Up Arrow

codeFoldRelated Cmnd + Opt + Up Arrow

codeUnfold Opt + Down Arrow

codeUnfoldAll Cmnd + Opt + O

codeUnfoldRelated Cmnd + Opt + Down Arrow

Selecting Code using the pointer

You can select the badge representing a code folded block, either using the keyboard
or using the mouse. When the badge is selected, the content of the block it represents
is selected. In addition, double clicking on the badge selects its content.

When Omnis needs to select a line in a folded block, e.g. when hitting a breakpoint, or
clicking on a stack list entry, the editor automatically unfolds the block (and any
containing blocks) in order to display the line correctly.

Entry Behavior

As soon as an edit would affect a folded block, Omnis automatically unfolds the block

(and any containing blocks) before applying the edit.

Saving the Code Folding State

Omnis stores the code folding state with the method.

When using the method editor, the state is saved back to the class with the method,
provided that the editor is not operating in read-only mode. In the latter case, you can
still fold or unfold methods in a read-only class, but changes to the code folding state
are not saved to the class.

When using the remote debugger, changes to the code folding state are saved locally
to the cache of methods loaded from the server. However, once you re-open the debug
session, these changes are lost; the one exception to this is any code folding that has
been applied while editing a method in a remote debug edit session.

 Method Editor

 57

Therefore, you should consider code folding a semi-permanent state, since as soon as
Omnis needs to display the contents of a folded block for some reason, it will open the
block.

JSON Export

When Omnis exports a method as part of JSON export, it now appends the string $…
to the inline comment of commands that correspond to a code folded block. This allows
Omnis to regenerate the code folding state of the method when it imports the class
JSON.

Word Wrapping
Long lines of code displayed in the Code Editor will now wrap onto the next line
automatically, and the text that wraps is drawn with an indent to make it clear that it
belongs to the wrapped line (you can disable this behavior, so code lines are not
wrapped, which corresponds to behavior in previous versions).

There is a new menu command, Word Wrap, on the View menu of the method editor
and remote debugger windows to toggle Word wrapping; the option is turned on by
default, and the state is saved with the window setup. When Word Wrap is enabled
there is no horizontal scrollbar in the code editor window and long code lines wrap to
the next line at suitable break characters, or they wrap if there is no break character.

For method content tooltips, word wrapping is always on, irrespective of the setting in

the window for which the tooltip is being generated.

Inline comment wrapping & color

When word wrap is turned on and the Code editor encounters an inline comment, it
tries to shrink the gap between the end of the code line and the inline comment to
avoid wrapping the code line if possible: if the inline comment is still too long to fit onto

the line it will wrap onto the next line, under the code line and is displayed indented.

As a result of these changes to the wrapping behavior of inline comments, their default
color has been changed to gray for all of the themes (so they are different to code).

Method Search
There is a new Search or filter option in the method editor tree (method list) in the
Method Editor (and Remote Debugger) to allow you to find specific named methods, or
methods that start with or contain specific characters. As you type in the search box,
the method list updates automatically to highlight the method names that match or
contain the search (in currently expanded nodes only). These lines draw in a new
colour, treelinesmatchingsearchcolor in the IDEMethodEditor section of
appearance.json. The editor selects the first matching method for the search and
shows its contents. While the search box has the focus, you can use the find and
replace menu of the method editor (or its find next and find previous shortcuts) to select
the next or previous matching method. There is also a new context menu item for the
method list called "Select Found Methods", which selects all matching methods. There
is a new menu option ‘Search Method Tree’ on the Find and Replace menu that puts
the cursor in the method search box, which also has a keyboard shortcut named
"searchMethodTree" that appears in keys.json - note that the default disable all
breakpoints shortcut has changed as a result of this change.

The savePropertySearchDelay item in the ide section of the config.json file has been
renamed saveSearchDelay, and now applies to both property and method name

searches.

There is a new item on the View menu, "Show Method Tree Search Box", that allows
you to toggle the method search box (the default is enabled). The state is saved with
the window setup.

What’s New in Omnis Studio 10.2

58

Showing Built-in Class Methods
It is now possible to view the built-in methods for a class in the code editor, making it
easier to view their parameters and override them, if required. There is a new option in
the View menu in the method editor, Show Built-in Class Methods, which allows you
to toggle the option. When checked (the default), the class methods node in the
method name list includes the built-in class methods for instances of the class type
being edited, including $control, $construct, and $destruct – this is the case for remote
forms, remote tasks, window classes, and other classes that can be instantiated. In
addition, $canclose will be shown for the relevant instance types, while $select and
$fetch are shown for table classes. Many other methods could be shown depending on
the class type, including $filereadcomplete, $init, $term, $sfsorder, $sfscanclose,
$pushed, $sqldone, $suspended, $resumed, $loadfinished, $previewurlclicked,
$pdfcomplete.

The built-in methods behave in a similar way to inherited methods, that is, you can
override them, or set them back to using the default, by using "Built-in Method..." option
from the menus (this is analogous to using Inherit Method... for an overridden inherited
method). When you override a built-in method, Omnis pre-defines the parameters of
the new method to match those required by the built-in method.

The names of the built-in class methods are shown in the tree using the no set property
color (this is consistent with how built-in method names are drawn in the Interface
Manager).

There is a new theme member overriddenbuiltinmethodstyle that can be used to
give the name of an overridden built-in method a different text style when it is shown in
the tree. This new theme member is in the IDEmethodEditor group of the
appearance.json file, and can have the same possible values as
overriddenmethodstyle; it defaults to 2 (italic).

Remote Debugger
You can now edit methods and code that you are debugging in the Remote Debugger.
In Studio 10.0 & 10.1 you could debug and step through code on a remote server app,
but you could not make any changes to the code: however, in this version you are able
to make limited changes to your code.

The Remote Debugger client now has two options for opening a session: either Open
Debug Session, or Open Edit Session. A “Debug session” works just like 10.1, so it
can be used for remote debugging.

An “Edit session” allows you to edit methods via the remote debug interface window,
that is, you can apply edits, and you can create new variables via the fix error dialog.
Note that until you try to save the method back to the server, you will not know for sure
if the method will be accepted, since only part of the library is available when editing -
you can use instance, class, local, task and parameter variables (from the class or a
superclass) or any file class variable in a file class used by the method. Using variables
from other file classes, or using notation, functions or commands available on the
server (but not the client), will be displayed as an error if you edit a line containing
something only available on the server. However, you can still save the method

successfully in this case.

In edit mode, methods default to read-only in the remote debug window. You need to
explicitly press "edit method" in the toolbar to edit the method, after which you cannot
do anything else with the window until you press Save or Cancel or close the window.

Remote Debug Menu

There is a new Omnis preference $showremotedebugmenu ($root.$prefs) to control
whether or not the Remote Debug menu is displayed. It defaults to kFalse, and is not
saved. Therefore, if you want a library to display the Remote Debug menu, you must
assign kTrue to this property in your startup code.

 Method Editor

 59

Server Port

The default server port for the remote debugger ("debugPort" in the config file) is now

6102.

Resolved Name Colors
New syntax colors and styles have been added to the Code Editor to highlight field
names and parameters that are “resolved” or “unresolved” for certain commands that
reference field names and notation group members.

The Code Editor can now optionally (defaults to on) display names it has resolved
using a new resolvednamecolor and resolvednamestyle, and names it has failed to
resolve using unresolvednamecolor and unresolvednamestyle.

If useresolvednamecolorsandstyles is true (all members are in the IDEmethodSyntax
section of appearance.json) the code editor tries to resolve certain names, and if
successful draws them using the resolvedname color and style; if unsuccessful it draws
them using the unresolvedname color and style.

Examples of where this applies are the parameters of the Redraw command, Queue
set current field command, names in notation such as $cinst.$objs.name, and method
names in calls such as $cinst.$mymethod().

If a name is drawn using the unresolvedname color and style it does not necessarily
mean there is an issue, e.g. it could be a notation reference such as $cinst.$objs.name,

where the object is dynamically added and named at runtime.

Appearance Colors
There are some new colors in the Code Editor, defined in the IDEMethodEditor section
of appearance.json file (and included in the theme files):

❑ codeassistantpopupcolor

The background color of the Code Assistant popup window.

❑ treelinesmatchingsearchcolor
The background color of unselected method editor tree lines that match the current
method search.

❑ methodeditorcodeleftmarginbackgroundcolor
The background color of the left margin of the code editor (where the Go point and
breakpoints are shown).

❑ overriddenbuiltinmethodstyle

The background color of an overridden built-in method in the method list

❑ executionpositioncolor
lines are drawn above and below the Go point code line and Call stack return lines
using the new color

❑ methodeditorcodereadonlybackgroundcolor
background color showing that a class is read-only and therefore its methods
cannot be edited

❑ styledbadgebackgroundcolor and styledbadgetextcolor
The background color and text color of badges drawn in styled text in the Code
Folding in the Code Editor, and defined in the IDEGeneral section of
appearance.json. A badge is also shown on the Trace Log node of the Studio
Browser tree, to show the number of trace log lines.

Panel Popup Menu
The Panel Popup menu, previously underneath the Code Editor area, has been moved
to the lower left corner of the Method Editor window, below the method name list, but
otherwise the buttons perform the same action.

What’s New in Omnis Studio 10.2

60

The equivalent options are on a new hierarchical menu called Bottom Panel on the
View menu in the Code Editor.

Save Image in Debugger
You can now save an image from the debug variable panel in the Code editor using a
new Save picture button (folder icon). The new button is available when viewing image
data in the debug variable panel, in the modify tool strip to the right of the image.

The Save picture button is enabled when not modifying the variable value, and when
the debugger recognizes a JPEG, GIF or PNG (the latter includes shared pictures
stored as PNG, in which case the saved image is a PNG without the shared picture
header).

The new button uses the binaryEditOperations keyboard shortcut.

To line
You can now Alt-click in the left margin of the Code Editor to execute the debug
command "To line" provided that code is executing.

Do and Quit method commands
Normally, all commands matching the first typed character appear in the Code
Assistant list, but you can limit or change which commands are shown, or selected by
default if there is only one matching command, by enabling the Use Minimum
Lengths option on the Filter Commands submenu (note the state of this option is
saved in the Save Window Setup). This option is now enabled by default, meaning that
the Do command will be selected by default when you type 'D' (rather than the Default
command), and Quit method will be selected by default when you type 'Q' (rather than

the Queue commands).

Variable tips
Precedence is now given to variables over functions when generating tooltips for the
Code Editor, for example, when a variable name is the same as a function name
(although this is generally not recommended).

 Method Editor

 61

Documentation tab
You can now change the width of the fields on the documentation tab in Code Editor by

dragging their borders.

The positions are not saved, and will revert to equal distribution when resizing the code
editor or changing method.

Boolean Variables
Omnis no longer treats empty and false as two different values of Boolean variables,
when displaying them in the debugger. Therefore the debugger variable panel, variable
tooltips, variable context menu and variable window now all display and treat empty as
False or NO as appropriate.

Copy Lines
There is a new option in the Code Editor context menu, Copy Lines, to allow you to
copy the complete code in the current line (the line containing the caret), or all
complete lines in the current selection.

Select Object
A search box has been added to the Select Object dialog (opened when you select the
subtype of an object or object reference variable). A Search box has also been added

to Set Superclass dialog.

Sta: command and Square Brackets
In previous versions, there was a problem entering quoted square bracket expressions
in the Sta: command, which has been fixed in this version, but as a result of the fix, the
close square bracket (]) is now not added automatically when editing a Sta: command.

When you split a text block command parameter using Return (carriage return) the
“Sta:” command prefix is now inserted into the text block automatically.

Text: and parenthesis
In previous versions, the Text: command with just an open bracket (as its parameter
would not tokenize and caused an error. Therefore, the way the Code Editor handles (

at the end of a code line has been modified.

If Omnis encounters (at the end of a command line, it prompts for options (Carriage
return etc). If there is another character after the (, without a trailing comma, Omnis
stops looking for options, and treats the characters as text. This leaves the special
case of (on its own at the end of the text. You can enter this using square bracket
notation with a constant [kOpenParen]. There is also a new kCloseParen constant.

Omnis Help
The behavior of the inline Omnis Help system after pressing F1 or using the Help menu
while using the new Code Editor has been improved. The new behavior is as follows:

1. If no text is selected in the Code Editor, it tries to obtain the text from the syntax
item containing the caret - if there is nothing useful, no help will be displayed,
otherwise it will pass the text for the syntax item to the help system, e.g.
‘Calculate’ for a Calculate command when the caret is in the command name.

2. If some text is selected, and all selected text is on a single line, the editor
passes the selected text to the Help system. If the selected text spans lines, no
help will be displayed.

After performing 1 or 2, the Help system opens. If the text passed to the Help system
uniquely identifies a single help page, that help page is displayed. Otherwise, the help

window opens at the search tab, searching for the text passed to the Help system.

What’s New in Omnis Studio 10.2

62

Help for Built-in Functions
In previous versions, the Code Assistant displayed a short text description for built-in
functions, but now the full help page for the function is shown. There is a new entry
useOmnisHelpPagesForFunctionHelp in the codeAssistant section of config.json which
you can set to control this behavior.

If a help page does not exist for the function, or useOmnisHelpPagesForFunctionHelp

is set to false, the code assistant reverts to showing the text description.

Auto tab: Table instance data
There is a new entry "Table instance data" at the start of the Auto tab when debugging
code in a table instance. Simple references like $cinst.name will show in the Auto tab,
when name is not a variable in the normal variable scopes, e.g. a column in a row in a

table instance.

MultiProcess Server
Under normal operation, the multi-threaded Omnis Server does not take full advantage
of multi-core processors, because it uses a time-slicing model that single threads the
execution of Omnis code in all situations, other than when some sort of external call
(e.g. a DAM call) is in progress. The concept of the MultiProcess Server (MPS) for the
Linux Headless server has been designed to eliminate this short-coming and deliver
significant performance improvements in your applications, by using a multiprocess

rather than multithreaded server model.

When using the MPS in the Omnis Linux Headless Server:

❑ There is a single main server process that receives requests from clients.

❑ There is a separate child process for each client, represented by a single remote

task.

The main server process passes the request to a child process which executes the
request. The child process then passes its response back to the main process, which
then sends the response to the client.

Each child process is created using a forking system; however, the server is
implemented so that when a child process becomes free (because its remote task
destructs), it can be added to a pool of free child processes, ready to be associated
with a new remote task. This greatly improves performance.

One of the main features of the new MPS is that it can be plugged into an existing
server configuration, and it will still work with the load sharing process; in other words,
it still has exactly the same interface via its server port.

Another major advantage of using the MPS is that since execution is isolated to a
single client per process, any problem in the child process (a crash perhaps), will only
result in a single client receiving an error, and the server will continue running.

With the implementation of the MPS, there is some new functionality and some
changes to existing functionality, with regards to opening libraries, and the way class

data is cached, which are described below.

Configuration
To use the MultiProcess Server (MPS), you need to add (or enable) some new entries
in the “server” section of the server configuration file (config.json) for the Linux
Headless Server. The new entries are:

❑ multiProcess
When multiProcess is true, the Linux Headless Server will start up in multiprocess

 MultiProcess Server

 63

mode; in this case, the entries start, stacks and timeslice in the server section of

config.json are ignored as they are not relevant.

❑ maxChildProcesses
is the maximum number of child processes.

❑ maxFreeChildProcesses

is the maximum number of free child processes (not associated with a remote task).

The new options are written to the server section of config.json like this:

 "server": {

 “multiProcess”: true

 “maxChildProcesses”: c,

 “maxFreeChildProcesses”,f

 },

In addition, the headless server in all its variants (single-threaded, multi-threaded and
multi-process) supports some new entries in the server section of config.json that
provide some control over reading requests from a client:

 "timeoutReads": true,

 "readTimeout": s

These entries indicate if the server will timeout a connection from a client if the
complete request is not received in readTimeout seconds.

Configuration files

Child processes never write to the files omnis.cfg and config.json.

Libraries
The MPS starts up just like the normal headless server. As such, it opens libraries in
the startup folder, and constructs their startup tasks. There are however some rules
that need to be followed, because of the way the forking process works:

❑ No DAM connections can be left open after the startup task constructors have run.

❑ No files opened by FileOps or other externals should be left open after the startup
task constructors have run. This is because their file descriptors will be shared by
each child process, because of how the forking process works.

❑ A child process can only write to a library that it has opened or created itself (this is
opened with exclusive access by the child process). If the child process attempts to
save a class to a library it did not open or create, Omnis ignores the error and
returns success rather than an error code.

❑ A child process can only close a library that it has opened or created itself.

❑ osadmin cannot open and close libraries in the MPS.

Internally, when the forking occurs, the child process closes and re-opens the file
descriptor (read-only, shared) for all open library files, since the otherwise shared file
descriptor with the main process has a common shared file offset. Additionally, byte
range locking calls in the child become no-ops.

Classes
As part of startup of the MPS, Omnis caches all class data from all open startup
libraries in memory. This allows the class data to be immediately available to a child
process after it is created using the forking process. As stated earlier, you cannot write
to the startup libraries. Therefore, you should not modify classes belonging to these

What’s New in Omnis Studio 10.2

64

libraries in a child process, since the child process will typically be used for many

remote task instances during its lifetime. However, this is not enforced.

Commands
You cannot use the following commands in the MPS:

❑ Start server and Stop server.

❑ Set timer method and Clear timer method.

All of the above generate the error 125446 (cannot use this command, function, or
notation, in the multi-process server).

You cannot use the command Quit Omnis in a child process of the MPS. Attempting
this generates the error 125437 (cannot use this command, function, or notation, when

running in a child process in the multi-process server).

Finally, the commands Begin critical block and End critical block have no effect in the
MPS. This is because each child process handles a single remote task.

New sys() functions
There are two new sys() functions:

❑ sys(243) returns true if and only if Omnis is running in MPS mode.

❑ sys(242) returns the child process ID, a character string that uniquely identifies the
child process that is currently running. When the method is not running in the MPS,
or not running in a child process, this has the value “0”.

sys(242) can be used to identify the child process that is to process a request from a
client: see the section “Using The Same Child Process” later in this document.

Process init method ($processinit)
When the MPS creates a new child process via the forking process, the child process
runs the $processinit() custom method (if present) in the startup task of each open
startup library. You can use $processinit() to carry out any initialization required to set
up the environment in which all remote tasks handled by the child process will run.

Database Connections
Each child process has its own SQL database connections. You could use
$processinit(), for example, to create a server pool containing a single database

connection, that you can then use for all remote tasks that the child process handles.

Remote Task Methods
$maxusers

The MPS does not support the $maxusers property of a remote task.

$sendall()

Due to its multi-process architecture, the MPS does not support notation such as
$iremotetasks.$sendall(), because if you execute this in a child process, it will only

apply to the currently executing remote task.

To overcome this, Omnis now includes (for all platforms, and all variants of server:
single-threaded, multi-threaded and MPS), some new notation that allows you to
“broadcast” a message to all remote tasks, including those running in another child

process in the MPS.

Sending messages to Remote task instances using $broadcast()

There is a new method of the $iremotetasks group of remote task instances called
$broadcast() that can be used to send or “broadcast” a message via a public method to
all task instances; its syntax is:

 MultiProcess Server

 65

❑ $broadcast()

$iremotetasks.$broadcast(cMethod, vListOrRow [, bWait=kTrue])

Calls the public method cMethod in all open remote task instances, passing
vListOrRow as a parameter to each call. If bWait is kTrue returns a list of return values,
containing a line for each remote task that executed the method.

cMethod need not exist in all remote tasks; if it does not exist, Omnis ignores the
remote task.

When using bWait with value kTrue, all remote tasks must return the same data type. If
the returned type is row, then the return value list is defined to have all of the columns
of the row (so all remote tasks must use the same definition for their returned row),
otherwise the return value list has a single column with the returned data type as its
type.

Omnis Data Files
Omnis data files cannot be opened in the MPS. Attempting to open one causes the
error 101437 (Cannot use data files (either because the serial number does not allow
data files or because Omnis is running as a multi-process server or because Omnis
was invoked with --runscript)).

Icon data files such as omnispic.df1 can still be used. As for libraries, the child process
closes and re-opens (read-only, shared) the file descriptor for all open picture data files
when it initializes itself after it has been created by the forking process.

Execution
When a new message arrives from a client, the main process inspects it. If the
message is for an existing remote task, the main process sends it to the child process
handling that remote task; to do this, the main process maintains a table that maps
remote task connection id to child process. If the message requires a new remote task,
then the main process either sends it to a free child process, or creates a new child
process via the forking process (if configuration allows), and sends the request to the
new child; if the configuration does not allow (the maxChildProcesses limit has been
reached), the main process queues the request internally until a child process becomes
available. This latter queueing behavior works best in a server handling RESTful, ultra-
thin or SOAP web service requests, since these requests are usually processed
relatively quickly; when the server is handling JavaScript client remote forms, it is best
to allow essentially unlimited child processes, so a client can connect immediately.

Child processes send an event to the main process when their remote task destructs.
The main process can then decide whether to tell the child process to exit (because the
maximum number of free child processes has been reached), or add the child process
to the pool of free child processes.

Licensing
Management of the server user count is handled using a shared memory semaphore.
The main process initializes the semaphore with a count equal to the server user count.
When a child process creates a remote task, and therefore needs a license, it waits on
the semaphore. For a RESTful request, it waits indefinitely, and for other requests it
tries to wait, and if the semaphore does not have availability, it rejects the request. This
behavior is then equivalent to that of the multi-threaded and single-threaded servers, in
that RESTful requests are queued waiting for a license, and other requests are rejected
immediately if a license is not available.

When a child process deletes a remote task, it frees the license by posting the
semaphore.

If a child process crashes while it is holding a license, the license will not be freed by
the child. However, the main Omnis process attempts to restore the license semaphore

What’s New in Omnis Studio 10.2

66

count by posting to the semaphore appropriately, based on the server user count and

the number of child processes currently assigned to a remote task.

Load Sharing
It is possible to use the MPS in conjunction with the Load Sharing Process, although
this only really makes sense when each Omnis server accessed via the load sharing
process is running on a separate machine, since the MPS is essentially providing a
load sharing mechanism. The main process maintains the load sharing statistics and
responds to the load sharing statistics request message.

Remote Debugging
Due to the dynamic nature of the Omnis environment, remote debugging is supported
in the MPS only in the context of a single child process, explicitly created to execute

clients that are to be remotely debugged – this is called a Remote Debug Child.

Debugging Startup

The following sections describe key points regarding how to remotely debug Omnis
code running in the MPS.

If the member pauseAtStartupUntilDebuggerClientStartsExecution in the remote
debug configuration is true, you can debug the startup tasks of the remotely
debuggable code in the MPS. This code runs in the main process.

Start the MPS, use a Windows or macOS copy of Omnis to connect a remote debug
client to the MPS, and debug the startup code.

After MPS startup completes, the remote debug connection closes.

Debugging the Remote Debug Child

After MPS startup, assuming remote debugging is enabled, the MPS creates the
remote debug child, and the remote debug child then becomes the instance of Omnis
visible to remote debug clients. Therefore, using the remote debug client on a macOS
or Windows copy of Omnis, you can connect to the MPS remote debug child, and
debug that directly.

If the member pauseAtStartupUntilDebuggerClientStartsExecution in the remote
debug configuration is true, the remote debug child pauses, waiting for a remote debug
client to connect, before running any $processinit() methods. In this case, the remote
debug client has a hyperlink “Run Process Init” rather than “Run Startup”.

Making a Client Use the Remote Debug Child

For JavaScript remote form clients, specify ?omnisRemoteDebug=1 on the URL used
to open the Omnis remote form.

For ultra-thin clients, include omnisRemoteDebug=1 in the query string used to invoke
the ultra-thin request.

For RESTful clients, include the header omnisremotedebug in the request.

In all of the above cases, the request that requires the remote debug child will be

queued if necessary, waiting for that child to become available.

Using the Same Child Process
The MPS allows you to cache data for ultra-thin and RESTful requests, to improve
performance, using a query string parameter or HTTP header respectively, to specify
the process ID (sys(242)) of the child process that is to ideally process the request.

When a request arrives that identifies a specific child process, the main process sends
it to that child if the child still exists, otherwise it sends it to any available child.

For ultra-thin, the query string parameter is named ProcessID.

 MultiProcess Server

 67

For RESTful, the HTTP header is named omnisprocessid. When using RESTful in
conjunction with a process ID, you must always immediately respond to all requests,
i.e. you cannot defer the response until later by assigning kFalse to $restfulapiwillclose.

Logging
The old-style web service logging to a data file is not supported for the MPS. Instead,
you can configure the datatolog for the logToFile logcomp to include web services.

If you configure logging to go to standard output, by setting stdout to true in the
logToFile object in config.json, logging from all processes in the MPS (main and child)
will go directly to standard output, serialised between all of the processes using a
shared mutex.

If you configure logging to go to a file in the logs folder, all child processes send their
log data to the main process, which then writes the log data to file.

Command Line
All versions of Omnis on all platforms now use --version as the switch to report the
Omnis version and build number, rather than -version.

The Linux Headless Server has a number of new command line switches. Pass the
switch --help to display them all.

Command Action

homnis --help Print the help information and then exit

homnis --version Print version and build number and then exit

homnis <sw> Start the server using the start server and multi-
process settings in config.json

homnis <sw> --st Start the single threaded server ignoring the
start server and multi-process settings in
config.json

homnis <sw>--mt Start the multi-threaded server ignoring the start

server and multi-process settings in config.json

homnis <sw>--mp Start the multi-process server ignoring the start
server and multi-process settings in config.json

homnis <sw> --runscript=path <args> Open the supplied library identified by <path>,
construct its startup task, and pass the
remaining command line arguments <args> to
the $runscript method in the startup task

<sw> can be any combination of the following:

Switch Meaning

--jscomments Includes comments in client-executed

JavaScript generated by homnis

What’s New in Omnis Studio 10.2

68

Switch Meaning

--debugport=n Overrides the configured remote debugging
port

--pausestartup Forces homnis to wait for a remote
debugging client to connect before running
startup (and $processinit if relevant)

--debugscript Starts the remote debug server at startup

when invoked with –runscript

Any other user parameters that can be
accessed from Omnis code using sys(202)

--runscript

This mode allows you to use headless Omnis to run a script, that is, use headless
Omnis to run some Omnis code within a shell script. For example, you could use the
HTTP Worker Object in some Omnis code to invoke requests against an Omnis server.
Used in conjunction with bash (or other shell) this can be quite powerful.

For example, you can write a script such as:
for i in {1..10}

do

 homnis —runscript=mylib.lbs <args> &

done

wait

and execute it using
time ./myscript

This will create 10 instances of the run script homnis process, wait for them to
complete, and report how long execution took.

In more detail, the path passed via the runscript argument is the path of an Omnis
library, the startup task of which must contain a method named $runscript. This method
receives as parameters the remaining parameters on the homnis command line, so for
example you could pass a URL or an iteration count, or both. When homnis starts up in
run script mode, it opens just this single library (ignoring startup libraries) and executes
the method $runscript in the context of its startup task. The script library is responsible
for calling Quit Omnis when it has finished. This allows it to start workers which may
not complete until after $runscript has returned.

When homnis is running a script:

❑ It does not write to configuration files omnis.cfg and config.json.

❑ It does not accept command input from stdin.

❑ It only logs to stdout if logging is configured

❑ It will only open the script library passed as a parameter

❑ It will not open Omnis data files

You can use the new function printf()to output a string from a script: printf(string[,
newline=kTrue]) writes the string to standard output followed by a newline character if
required (Ignored on Windows. Executes on macOS and Linux only).

 Window Components

 69

External Components
It is possible that a loaded external component will not be in a good state after the
forking process, probably due to problems with data structures in use by external
libraries it is using (typically data structures containing some sort of operating system
handle or file descriptor).

To cater for this, an external component with this kind of issue needs to return the flag
EXT_FLAG_RELOAD_AFTER_FORK in the flags returned by ECM_CONNECT. This
means that the main process unloads the component (calling ECM_DISCONNECT)
after startup completes. Each child process then reloads the component (calling
ECM_CONNECT again) as part of its initialization. As a result, each child process has

a clean copy of the component.

Window Components
The following new features and enhancements are for Window Class components (not
JavaScript components or remote forms).

Token Entry Field
A Token Entry Field is a new type of text field for window classes (thick client) into
which the end user can enter text which then becomes tokenized; a token is a single
block of text that can be easily selected, moved, copied or deleted as a single item.
The behavior of the Token Entry Field is very similar to the Recipients (To:) field in an
email program, such as Apple mail or Google gmail, where you enter each email
address as a block or token. When you start to type a name, a popup list will appear
containing all entries that match what you typed and you can select one of the emails in
the popup list, or you can complete the email address manually. You can then press

Tab or Return to complete your selection and the text becomes a single block or token.

A token in the token entry field is defined to be a character string that either conforms
to the syntax specified by a regular expression associated with the field
($tokenregexp), or matches one of a set of possible values in a list associated with the
field ($tokenlist). As the token entry field operates on text, its $dataname needs to be
set to a Character variable.

The token entry field allows the end user to enter and display a delimited list of tokens,
separated from each other by a delimiter character (such as a comma, the default
delimiter). Tokens also have an additional syntax (defined by RFC822), where they can
be expressed in the form displayText<tokenValue>. In this case tokenValue is the
actual token that conforms to the regular expression or a value from the token list, and
displayText is the text displayed in the field when the item is tokenized (and not being
edited). For example, consider the comma-delimited text string containing four tokens
(email addresses):

Bob Mitchell<bob.mitchell@omnis.net>,Jason Gissing<jason.gissing@omnis.net>,Bob
Whiting<bob.whiting@omnis.net>,colin.richardson@omnis.net

When displayed in the token entry field, it will look like the following, when the third
token is currently being edited:

What’s New in Omnis Studio 10.2

70

Using a Token Entry Field

As you start typing text into a Token Entry Field, the text will become a token value: if
the field uses the additional display text syntax, then this needs to be part of the text
you are entering. As soon as you press Return or a delimiter character, this terminates
entry of the new token, the token is then displayed as either a valid token or an invalid
token, and the caret is positioned after the token, ready for you to enter the next token.

There is a down arrow button for valid tokens, which you can press to open a menu for
the token, while there is an x button for invalid tokens that you can press to delete the
token.

The token entry field does not allow empty tokens by removing consecutive delimiter
characters. In addition, the token entry field does not support overtype mode, and does
not allow leading or trailing whitespace for tokens and will strip these automatically.

Once you have entered some tokens, you can use the arrow keys to navigate around
the tokens, and then insert a new token by typing some text if required. While you are
entering a new token value, mouse selection of text, and left arrow, right arrow and
other relevant key combinations are restricted to the new token being entered, to
prevent premature termination of edit mode for the new token. However, up or down
arrow will terminate entry of the new token.

When the caret is positioned between tokens, pressing forward delete will delete the
next token, and pressing backspace will select the previous token (this latter behaviour
is how the macOS standard token entry field behaves). In addition, when the caret is
positioned before a token, pressing return starts editing the token.

The token entry field also supports popup assistance, providing a list of tokens that
match the text entered so far, allowing you to select one of the values in the popup list
to populate the new token. The popup only displays after a pause in typing, the length
of which can be configured in config.json ("defaults", "tokenEntryPopupDelay", default
value 500 milliseconds). If there is a single valid token selected, or if the caret is
positioned before a valid token, pressing Alt/Option+Return opens the menu for the
token if present.

You can select a token or contiguous range of tokens using the arrow and other keys,
like any other objects, so that you can delete them or copy them to the clipboard for
example. Double-clicking on a token (when the Shift key is not pressed) starts editing
the token. The Undo option works as you would expect for an Entry field.

You can use drag and drop to re-order tokens, or to move or copy tokens from one
token entry field to another. In order to do this, a couple of lines of Omnis code are
required (described below).

Properties

The token entry field supports many of the standard properties supported by other
entry fields. The $objtype property for the token entry field has the value kTokenEntry.

The $dropmode property has a new constant kAcceptTokenEntry to accept drop data.

$tokenlist

The $tokenlist property is the name of the list variable containing all possible token
values which is used for popup assistance and token validation. If omitted or empty, the
list for popup assistance is obtained by sending the evGetTokenList event.

When specified, the $tokenlist can have just one Character column containing all the
valid token values, possibly including some displayText. The $tokenlist can contain
more than one column, in this case it must have a column with the name ‘name’ that
contains all of the valid token values, possibly including some displayText. The list can
optionally have additional character columns named ‘desc’ and ‘iconid’, that contain a

short description of the token, and an icon to represent the token.

 Window Components

 71

You may need to consider performance when deciding whether or not to use $tokenlist.
Performance is affected by a combination of the number of possible token values, and
the likely number of tokens entered.

The entry field popup will always display either the token text or displayText. In
addition, the popup will display the desc value and the 32x32 icon with the specified
icon id if either or both of these columns are present. The popup draws the desc
column using the same font as the token entry field, with a point size 2 smaller (unless
the token entry field font point size is less than 7, in which case it uses the same font).
For example:

$tokenregexp

The $tokenregexp property is a regular expression used to validate the syntax of a
token. If $tokenlist has a list of all possible tokens, you can still use $tokenregexp for a
pre-validation step that reduces searches of $tokenlist.

The regular expression in $tokenregexp uses the new PCRE2 implementation. If you

omit both $tokenlist and $tokenregexp, all token values are valid.

$tokencase

If true, tokens are case sensitive. This affects both searches of the token list and
execution of the regular expression.

$tokenmenu

The $tokenmenu property contains the contents of the token menu. If specified, all
valid tokens have a dropdown button that can be used to open this menu (as a context
menu). The selected token is available as the pToken event parameter of
evOpenContextMenu.

You can distinguish between the user using the context menu and the user using the

token menu, because pToken has the value #NULL when using the context menu.

Note also that pToken includes the displayText as well as the token value if the token
has a displayText component.

$showtokendeletebutton

If $showtokendeletebutton is true, all tokens have a delete button when the control is

enabled.

3.7 $tokendelimiters

The $tokendelimiters property contains one or more delimiter characters which are
used to separate tokens (default is a comma). Each character specified can be used to
separate tokens from each other in the data stored in $dataname. The first delimiter
character is the default that the control uses when it needs a delimiter.

Note that this means that token values and displayText cannot include any of the
delimiter characters, nor can they include < or >.

Token Colors

The token entry field has 4 token-specific color properties: $validtokenbackcolor,
$validtokentextcolor, $invalidtokenbackcolor, $invalidtokentextcolor.

Each of these can be set to kColorDefault, which means use the corresponding entry in
the token section of appearance.json (this is a new section for this control).

What’s New in Omnis Studio 10.2

72

Events

The token entry field supports the same standard events as the multi-line entry field,
with a few exceptions noted here. It does not generate evClick, and will only generate
evDoubleClick when the control is read-only. In the latter case, if $allowcopy is kTrue, it
will only generate evDoubleClick when double-clicking on a token.

As the control does not scroll horizontally, it does not generate evHScrolled.

evGetTokenList

The evGetTokenList event is sent to the token entry field when $tokenlist is not
specified, to get the list of possible token values for the popup. This event has two
event parameters:

❑ pNewText: The text entered by the user, for which the list of possible token values

is required.

❑ pTokenList: The list of possible token values to be displayed by the token entry
popup. Assign this parameter when processing evGetTokenList.

The list to return via pTokenList has the same characteristics as $tokenlist. Note that
whereas the token field sorts the list of values to display in the popup when using
$tokenlist, the token entry field does not sort the list returned via pTokenList.

A simple example:
On evGetTokenList

 Do pTokenList.$define(cTokens)

 For #1 from 1 to 10

 Do pTokenList.$add(con(pNewText,"Test",#1))

 End For

Methods

$gettokens

$gettokens([bSelOnly=kFalse, bIncludeInvalid=kFalse, bIncludeDisplayString=kFalse,

bSort=kFalse, bRemoveDuplicates=kFalse])

Returns a single column list of the tokens stored in the control.

❑ bSelOnly. Only return selected tokens.

❑ bIncludeInvalid. If true, return all tokens, otherwise just return valid tokens.

❑ bIncludeDisplayString. If true, the values added to the list include the displayText

component.

❑ bSort. If true, sort the returned list in ascending order. Sorting uses $tokencase to
determine if case-sensitive sorting is required.

❑ bRemoveDuplicates. If true, remove duplicate entries. Note that if

bRemoveDuplicates is kTrue bSort must also be kTrue.

$droptokens

$droptokens([bRemove=kFalse, bSetFocus=kTrue])

Call this during evDrop for the token entry field, to insert dragged tokens into the
current drop location, optionally remove them from the drag source, and optionally set

focus to the drop destination. Returns true for success.

❑ bRemove. If true, remove the dragged tokens from the drag source, if it is a token
entry field.

❑ bSetFocus. If true, set the focus to the destination token entry field where the drop

is occurring, after moving or copying the tokens.

You can set up the token entry field to accept data dragged from other controls, and if
that data is text it can be used with $droptokens(); in this case, bRemove is not
applicable. For example, in $event for a token entry field:
On evDrop

 Do $cobj.$droptokens(kTrue)

 Window Components

 73

In this case, you need to set $dropmode to either accept all, or include

kAcceptTokenEntry.

Breadcrumb Control
The Breadcrumb control is a new window class component (not available for JS client)
which can be used to display the end user’s “location” within the hierarchy of an
application, as well as allowing the end user to navigate back up the system by clicking
on one of the “crumbs” or the “Home” crumb. A breadcrumb control is often seen in the
context of a website, as secondary navigation, but it can used to enhance the UI for
many types of desktop applications, such as consoles and dashboards.

The Breadcrumb control can be displayed in different styles: Arrow (as above),
Rounded rectangle, or plain Text; this is set in the $crumbstyle property. The following
is the rounded style, showing the third crumb highlighted when the pointer is over it.

The following shows the plain text style, showing the fourth crumb highlighted when the
pointer is over it.

Properties

The content for the other crumbs in the control are taken from a list assigned to its
$dataname property. The list has three columns: crumb_text (Character), crumb_id
(integer), crumb_icon_id (Character) – the icon ID is the name of an icon in an icon set
assigned to the library. The first crumb in the control is referred to as the “Home” crumb
and is always visible; its text and icon are defined in the $homecrumbtext and
$homecrumbiconid properties. The first line in the data list is the first animated crumb
to pop out from the Home crumb, with subsequent list lines being successive crumbs in
the control.

The Breadcrumb control has the following properties:

$homecrumbiconid The icons id used for the home crumb

$homecrumbtext The text shown on the home crumb.

$crumbstyle The drawing style of the breadcrumb, a constant:
kCrumbStyleText kCrumbStyleRoundRect
kCrumbStyleArrow

$textcolor The crumb text color

$crumboutlinecolor The outline color of breadcrumbs

$crumbcolor The color of a breadcrumb

$activecrumbcolor The color of the active breadcrumb

$activecrumbtextcolor The text color of the active breadcrumb

$showactivecrumb If kTrue the active crumb (the final crumb on the path) is
shown in the active color

What’s New in Omnis Studio 10.2

74

Events

The Breadcrumb control reports the evBreadCrumbPathChanging event which is sent
when the user selected a crumb in the path, with the event parameters
pBreadCrumbID, which is the id of the crumb (column 2 in the crumb list definition),
and pNewBreadCrumbList the proposed new path list.

This event can be discarded with Quit Event (Discard Event) which will prevent the

default action which is to shrink the path based on the crumb selected.

Example

The following code will create a breadcrumb as shown in the examples above.
where bread_crumb is a list assigned to $dataname of the Breadcrumb control

Do bread_crumb.$define(crumb_text,crumb_id,crumb_icon_id)

Do bread_crumb.$add("Clothing",1,"")

Do bread_crumb.$add("T-Shirts”,2,"")

Do bread_crumb.$add("Red-T-Shirts",3,"")

Redraw bread_crumb_control

There is an example app to demonstrate the Breadcrumb window control on the Omnis
GitHub repo at: https://github.com/OmnisStudio. Search for Omnis-Breadcrumb.

Side Panels
Side panels are a common UI element in many dashboard style designs seen today.
A Side panel is a vertical panel down the side of a window, containing clickable
options, such as a menu of options or other content, that can pop out on the left or right
side of a window. A side panel can be shown automatically, when the user hovers the
pointer over the left or right edge of the window, or linked to a button or menu option to
allow the side panel to be opened or closed manually by the end user. When a side
panel is opened it is animated.

Note that Side Panels are available for window controls only, not JS client controls.

There is not a separate Side Panel component, rather a side panel is a property of a
window component ($sidepanel, see below), so for example, you can create a Side
panel using a Page pane. To create or enable a side panel, you need to set the
$edgefloat property of a control to either kEFposnLeftToolbar or kEFposnRightToolbar
and the $sidepanel property will become enabled. Any window object that can be
marked as a left or right toolbar will have the $sidepanel property and therefore can be
enabled as a side panel. However, from a practical point of view, it would normally
make sense to use a container type field, such as a Page pane, Scroll box, or Group
box as a side panel, since you can then add other controls to the container which the
end user can interact with.

The following example window contains a Scroll box on the left, enabled as a side
panel, which contains a vertical tab strip containing a number of clickable options; in

this case, the small “hamburger” button can be used to hide or show the side panel.

https://github.com/OmnisStudio

 Window Components

 75

You can also place one container type control inside another container and enable the
second control as a side panel; for example, you could place a scroll box inside a page
pane and make the scroll box a side panel. Using containers and other controls in this
way, you can create some highly interactive interfaces or layouts in your application,

such as the following:

Properties

When a window component is marked as a left or right toolbar (via $edgefloat), the
$sidepanel property is enabled, and once enabled, you can set the property to kTrue
to enable the side panel behavior. You can then set the $sidepanelmode property (the
“peek” mode) so the side panel is shown and hidden automatically when the end user
hovers their pointer over an area to the left or right of the window. The threshold for the

peek area is 20 pixels on the left and right panels.

The $sidepanelmode property can be set to either a “push” or “cover” mode, as follows:

What’s New in Omnis Studio 10.2

76

❑ kSidePanelModePush
this mode pops out the panel automatically and pushes or moves the other controls
and content on the window either to the right or left.

❑ kSidePanelModeCover
this mode pops out the panel automatically which is placed over the top of the other

controls and content on the window.

❑ kSidePanelModeNone
the default mode meaning the side panel will not pop out automatically, when the
end user hovers over the window edge, but the $showpanel method can be used to

show the side panel

When set to a mode, moving the mouse to where the side panel is fixed, either the left
or right side of a window or a container, the panel will automatically animate or pop out.
Moving the mouse out of the panel will autohide the panel.

When a side panel is closed (not visible), the panel is internally disabled for tabs. This
prevents Omnis from tabbing to any controls within a hidden panel. When disabled, no
events are sent.

Side panels support $dragborder meaning if the panel is opened and the border of the

control is dragged, closing and re-opening the panel will open to the new dragged size.

Methods

Having enabled a control to behave as as side panel, by setting $sidepanel to kTrue,
you can hide and show the panel manually, in your code, using the $showpanel
method. In this case, you can set the $sidepanelmode property to

kSidePanelModeNone and show or hide the panel using a button and this method.

❑ $showpanel(iAction, [iMode])
performs an action (iAction) such as kSidePanelActionShow on a side panel object.
The panel mode (iMode) is optional, is the display mode (as above) such as

kSidePanelModeCover and only used when showing a panel

The side panel action constants are:

❑ kSidePanelActionlHide
hides the side panel

❑ kSidePanelActionShow
shows the side panel

❑ kSidePanelActionToggle
either hides or shows the side panel depending on its current state

For example, the following code for a button shows a scroll box name ‘panel’ that is
enabled as a side panel:
On evClick

 Do $cinst.$objs.panel.$showpanel(kSidePanelActionToggle,kSidePanelModePush)

Design Mode

In design mode, you can hide or show the side panel(s) using the window context
menu, which would allow you to design the remainder of the window without the side
panel getting in the way. When you Right-click on a window that has side panels
enabled, the Show Panels submenu option allows you to hide or show the Left and/or
Right side panels in design mode. If no panels are enabled for the window or container,
the menu items are not present. In addition, clicking on a side panel in design mode will
show a small semi-transparent button (shown below), which also allows you to hide or

show the panel.

 Window Components

 77

Example

There is an example app to demonstrate Side Panels on the Omnis GitHub repo at:
https://github.com/OmnisStudio. Search for Omnis-SidePanels.

Check Box
The Check Box window class control has a new “horizontal” mode which makes the
check box look and behave like a slider switch, which animates between the on/off
state. The check box control has a new $buttonmode, kCheckBoxHorizonal, to enable
the horizontal behavior.

The existing appearance properties $textcolor, $forecolor and $iconid specify the text
color, forecolor, and icon for the selected state, and $backcolor is the background of
the switch, while new properties $secondaryforecolor, $secondarytextcolor, and
$secondaryiconid specify the appearance for the off state of the control.

The horizontal check box animates by default but this can be disabled by setting
$animateui to kFalse. The animation is disabled when the horizontal check box is used
in a complex grid.

When button mode is kCheckBoxHorizonal the $text property is a comma separated
list allowing you to specify the text for the off and on states of the control. For example,
$text = “PERSONAL,BUSINESS”, or $text = “OFF,ON” will display the check box as
follows:

There are a number of new theme colors to control the appearance of the horizontal
check box; by default the theme colors are set to kColorDefault.

horizontalcheckbox the appearance group name for this control.

background background color of the control.

switchon background color of the switch in the ‘on' state

switchontextcolor text color of the switch in the ‘on' state

switchoff background color of the switch in the ‘off' state

switchofftextcolor text color of the switch in the ‘off' state

There is an example app to demonstrate the Check Box window control, including the
horizontal mode, on the Omnis GitHub repo at: https://github.com/OmnisStudio. Search

for Omnis-CheckRadio.

https://github.com/OmnisStudio
https://github.com/OmnisStudio

What’s New in Omnis Studio 10.2

78

Event & Control Methods
$sendevent method

The $sendevent method has been added to window objects and window instances to
allow you to test your $event/$control methods for window fields or window instances
(note this is for window fields and classes only, and not JS remote forms).

❑ $sendevent(iEvent[,eventParameters...])
Sends event iEvent (an ev... constant value) to the object with eventParameters
passed as name,value pairs, for example $sendevent(evClick,'pLineNumber',2).
Returns kFalse if the event is discarded; generates a debug error if there is a
problem with the parameters.

You can also pass #SHIFT, #CTRL/#COMMAND, #ALT/#OPTION as "event
parameter" names, in order to set the value of these variables when the event is being
executed.

When entering a $sendevent method, typing Ctrl+Space after the quote lists the event
parameter names.

Note that the invoked $event/$control will execute, but if there are requirements of the
data associated with the control, you need to separately code for that - $sendevent
simply sends the event causing $event or $control to execute appropriately.

Complex Grid
Sliding columns

Complex grids can now have Left or Right sliding columns. There is a new property
$hasslideoutcolumn which controls the sliding columns on the complex grid, taking one
of the following constants: kTableColumnsNormal, kTableColumnsLeftSlide,
kTableColumnsRightSlide, or kTableColumnsLeftRightSlide.

There is a new method $slideoutcolumn(kTableSlideDirection..., iRow=-1,
kTableColumn...) which sets iRow. If iRow=-1 the current row is hidden/shown/toggled,
while kTableColumn... controls if the row’s left or right column slides out. The
kTableSlideDirection... constants are: kTableSlideDirectionToggle,

kTableSlideDirectionHide, or kTableSlideDirectionShow.

There is an example app to demonstrate Sliding Columns in complex grids on the
Omnis GitHub repo at: https://github.com/OmnisStudio. Search for Omnis-
ComplexGridSlide.

Grid Exceptions

$width and $height are now supported as table exception properties for objects
referenced via $obj and $bobj, however, support for exceptions to objects in $obj is
limited to non-enterable tables only.

Other Grid enhancements

Complex grids now support mouseover(kMHorzCell) returning the column clicked

allowing you to detect clicks in slide out columns.

Complex grids now support the $hiliteline and $dropbetweenlines properties.

List Control
Queue click: pLineNumber

The pLineNumber event parameter is now set for evClick and evDoubleClick events
when generated via Queue click or Queue double click to a list or list sub-class.

https://github.com/OmnisStudio

 Window Components

 79

OBrowser
Setting Locale

The OBrowser control now offers more control over the client's locale. A new "locale"

attribute has been added to the "obrowser" section in config.json, for example:
"obrowser": {

 "locale": "it_IT"

 }

The locale attribute allows you to specify a language to be used in OBrowser (e.g. in
context menu entries), and it can also be used to change the Accept-Language header,
which servers can take into account to serve a language-specific page. For example, if
the locale is set in config.json to it_IT and the $urlcontrolname property is
http://www.google.com, Omnis will load Google's search engine page in Italian. When
locale is not specified in config.json, a locale of en-GB is used by default. Note that the
Accept-Language is only “for information” for the server, therefore, the server can send

back a web page in English even if you requested another language.

In addition, there is a new property in OBrowser, $acceptlanguagelist, which can be set
to a comma-delimited ordered list of language codes (ISO-639, without any white
space), that is used in the Accept-Language HTTP header. For example, it-IT will try
loading a web page in Italian, however the server determines whether the web page it
sends back is in the requested language in Accept-Language or not. If
$acceptlanguagelist is not specified (the default), then the value of the locale attribute
in "obrowser" in the config.json is used. If specified, it will override the value in the

attribute.

It is important to note that the $acceptlanguagelist will take effect only upon OBrowser
component initialization. This means that you will need to set $acceptlanguagelist,
close the window containing OBrowser in order to destroy the OBrowser instance and
re-open the window so OBrowser re-initializes and uses the recently set
$acceptlanguagelist values.

Port setting for OBrowser

Omnis now assigns the port for the OBrowser control dynamically. (This change was
made to fix issues with OBrowser HTML control port and multiple instances of Omnis.)

The change means you should no longer configure htmlControlPort in the OBrowser
section of config.json.

Certificate errors

A new property $ignorecertificateeerrors has been added to OBrowser to handle errors
when the component encounters errors with the website certificate.

If true, a URL with certificate errors will be allowed to be loaded. If false (the default),
an error will be raised and sent via the evBrowserFrameLoadError event. When an
error is raised, the message in pErrorText will be "ERR_CERT:The certificate for this
server is invalid:<errorcode>". This message can be tested to provide a prompt to the
user to allow them to proceed to the insecure page after setting this property to true.

Edit Controls
Dictation (macOS)

Support for Dictation is now turned on in Omnis by default (it was off by default in
previous versions). To disable Dictation you need to edit the Omnis configuration file
(config.json). There is a “useDictation" option in the “macOS" group in config.json,
which must be set to false; note you have to quit Omnis in order to apply the change to
the config.json file. Dictation will be disabled when you restart Omnis.
"macOS": {

What’s New in Omnis Studio 10.2

80

 "useDictation": false

 }

Dictation Level and Voice Control

Enhanced dictation has been replaced with Voice Control in macOS Catalina and later.

Voice Control has been introduced in macOS Catalina to improve on and replace the
earlier Enhanced Dictation feature. Speech can be dictated in Studio via Voice Control
when Dictation is enabled in Studio. Voice Control is enabled via the Accessibility
System Preference. When an edit field in Studio is accepting input and Voice Control is
active then speech input will be translated into text via the Voice Control speech
engine.

Tooltips
Tooltips for Window class components have been improved whereby you can control
the background and text colors, the justification of text and the position of the tooltip
relative to the component. In addition, tooltips now fade in and fade out, although the
latter does not apply when immediately replacing a tooltip with new content.

There are some new properties in the tooltip section of appearance.json that control
the appearance of tooltips.

❑ systemstyle
If true (the default), tooltips in the system style are drawn using colorinfobk and
colorinfotext; if false, Omnis style tooltips are drawn using tooltipbackgroundcolor
and tooltiptextcolor
Omnis style tooltips have rounded corners and (unless it is not relevant for the
particular tooltip) a small pointer

❑ tooltipbackgroundcolor
The background color used for Omnis style tooltips

❑ tooltiptextcolor
The text color used for Omnis style tooltips

❑ defaultjustification
The default justification of the tooltip rectangle relative to the active area of the
component: 0 left (the default), 1 right, 2 center; ignored by certain controls if
applying the default does not make sense

In addition, window components have a new property:

❑ $tooltippos
A kTooltipPos... constant that specifies where $tooltip appears relative to the
window control

kTooltipPosMouse $tooltip appears relative to the mouse pointer (this is

the default and corresponds to 10.1 behavior)

kTooltipPosRight $tooltip appears to the right of the window object

kTooltipPosBottom $tooltip appears below the window object

kTooltipPosLeft $tooltip appears to the left of the window object

kTooltipPosTop $tooltip appears above the window object

The enhancements to tooltips also applies to tooltips that appear in the Omnis IDE
including the Studio Browser and Code Editor. Specifically, the Code Assistant
parameter help popup is displayed using the new style tooltip.

Dropdown Lists
The color and fill pattern of the Dropdown List window class component on Windows
now respects the $backgroundtheme property and only defaults to Windows system

 Window Components

 81

colors when the theme is set to kBGThemeControl. For other background themes it
uses the appropriate colors and fill pattern, and for kBGThemeNone, it uses the
foreground and background colors and fill pattern.

Window Fields
There is a new property to show the contents of disabled window fields as greyed out.
The Entry, Masked Entry, and Multiline Entry window field types (kEntry,
kMaskedEntry, kMultilineEntry) now have the property, $fadewhendisabled. When
kTrue (the default is kFalse), and if the field’s $enabled property is kFalse, the field
content will be partially greyed out.

There are two new theme colors in appearance.json (and the theme templates) to
control the color and transparency of $fadewhendisabled: "fadewhendisabledcolor"
(defaults to kColorWindow) and "fadewhendisabledalpha" is the amount of alpha used
when fading to kColorWindow (default is 140).

Tab Strip
Object animation was added for various window class components in Studio 10.1
including the Tab strip control: this has been enhanced in Studio 10.2 by adding a
vertical mode, with the new property $verticaltabs, for all the new animated tab strip
styles.

The tabs can be set using $tabs, but now tabs in the animated styles have extra
options for the icon and caption: $tabiconid and $tabcaption can be set under the
‘Pane’ tab in the Property Manager (like Page pane and Tab pane).

When the tab strip has the focus, the Left, Right, Up, and Down keys can be used to
change the current tab.

There is an example app to demonstrate the Tabstrip animation on the Omnis GitHub
repo at: https://github.com/OmnisStudio. Search for Omnis-TabStrip.

Headed Lists
In order to display a 16x16 icon in the header in a Headed List, you need to set a
minimum column width of 21 pixels, to allow for the width of the icon and the padding

Omnis adds to a column.

HTML Controls
The omn_list_base.js and omn_date.js files have been bundled with
omnishtmlcontrol.js so you only need to reference the one file, omnishtmlcontrol.js.
Existing HTML controls should work as the bundle is named omnishtmlcontrol.js, which

is also now minified.

Focus Field Style
Window objects have a new property $fieldstylefocused to allow you to style an object
when it gets the focus, allowing you to override certain properties when a field has the
focus such as the font style or color.

Picture fields
Image Interpolation

By default, Omnis interpolates (smooths) an image when rendering it on ultra-high
definition displays. There is a new property for Picture fields, $nointerpolation (default
is kFalse), which allows you to disable interpolation, which may not be required for
certain types of image, for example, for displaying a bar code (macOS only).

Moving Objects into Group boxes
The $objlink property is an integer that contains information about the container of the
object. You can now assign $objlink in your code using class notation, provided that the

https://github.com/OmnisStudio

What’s New in Omnis Studio 10.2

82

design window is not open. So for example, you can now move an existing control in a

window class into a Group Box in the same window class using code.

Checked Menu Items
In previous versions Studio 10.0 and 10.1, Menu items with a single-state icon did not
show the checked state on Windows. These menu items now draw on a rectangular
colored background, using the same color as checked menu items which do not have

an icon.

Toolbar Spacers (Windows)
Toolbar spacers are now displayed correctly on Windows (version 8 and 10). Existing
toolbar spacer objects need to have their $blank property set to kTrue to restore their
previous (blank) appearance on Windows.

Tray Icon (Windows)
The mouse coordinates passed to the menu event are now relative to the main Omnis
Window; these now work correctly with the PopupMenu command, for example. When
Omnis is minimized, these coordinates will be larger than expected (due to how
Windows 10 handles them), but they can still be used with PopupMenu to open the

menu in the correct position.

Window Programming
The following new features and enhancements are for Window Classes (not JavaScript
remote forms).

Example Apps
A number of sample apps demonstrating new Thick Client controls or enhancements
have been placed on the Omnis GitHub repo at: https://github.com/OmnisStudio.
These include: Toast Messages (Omnis-Toasts), and System Drag and Drop (Omnis-
SystemDrop).

Toast Messages
Toast messages are small notification type messages that that can be “popped up” in
your application to alert the end user about something; toast messages were previously
available for remote forms (using a client command), but this enhancement allows you
to open toast messages in your desktop apps, via a window instance ($cinst) using a

new $showtoast method.

Toast messages have a title, message and an icon, and can be positioned in the top-
left, top-right, bottom-left, or bottom-right relative to the Omnis application window (not
the desktop) under Windows, or the whole screen on macOS. They will close

automatically after 4000 ms or a specified time.

Toast messages are non modal, and therefore they are outside the scope of other
Omnis window stacks and do not interfere with evToTop message processing, nor do
they change the end users current window or current focused object.

They have the following UI layout:

https://github.com/OmnisStudio

 Window Programming

 83

The following are some example toast messages:

Toast messages have close boxes so they can be dismissed before the default time
expires. They have a set of predefined colors and default width with the option to
override these colors by setting some new appearance theme settings. The message
box has a progress timer bar to show how long remains before the message box is
dismissed.

Toast messages can be stacked up to 6 levels deep. When a message is manually
closed or expires, it is removed from the stack and other on-screen messages adjust
keeping a stacked appearance.

$showtoast method

Toast messages are opened in the context of the current instance (window or object
instance) using the $showtoast() method.

❑ $cinst.$showtoast(cTitle, cMessage, iStyle, [iStack, iTimer, bClearStack]) adds a
new toast to a stack
cTitle: Text or empty ‘’
cMessage: Message text
iStyle: kToastSuccess, kToastError, kToastWarning, kToastInformation
iStack: kToastTopLeft, kToastTopRight (the default), kToastBottomLeft,
kToastBottomRight
iTimer: number of milliseconds the toast will be displayed (default is 4000, as set in
theme)
bClearStack: if kFalse (the default) new toast messages are stacked with previous
messages, otherwise if passed as kTrue, all previous toasts in stack will be cleared

For example:
$cinst.$showtoast(‘Success’,’Congratulations your order is complete’,

kToastSuccess)

$cinst.$showtoast(‘Error’,’Problems with your connection.’, kToastError,

kToastTopLeft)

Note: Attempting to add a toast to the same stack with an identical title and message

will reset the existing toast timer and not add a new toast.

What’s New in Omnis Studio 10.2

84

Toast Message Colors

You can override the default colors of the four toast styles, the onscreen delay, and the

default width in the ‘toast’ section of the appearance.json file.
toast

{

 toastsuccessbackgroundcolor : color

 toastsuccesstextcolor : color

 toastsuccessicon : number

 toasterrorbackgroundcolor : color

 toasterrortextcolor : color

 toasterroricon : number

 toastwarningbackgroundcolor : color

 toastwarningtextcolor : color

 toastwarningicon : number

 toastinformationbackgroundcolor : color

 toastinformationtextcolor : color

 toastinformationicon : number

 toastdefaultdelay: 4000

 toastdefaultwidth: 400

}

The following example code opens different toast messages:

If (toastType>kToastInformation)

Calculate toastType as kToastSuccess

End If

Calculate type as toastType

Switch type

Case kToastSuccess

Calculate title as "Success"

Calculate message as "Congratulations. Logon complete."

Case kToastError

Calculate title as "Error"

Calculate message as "Sorry your details are incorrect. Please

check your deails and try agin."

Case kToastWarning

Calculate title as "Warning"

Calculate message as "Please check your settings"

Case kToastInformation

Calculate title as "Information"

Calculate message as con('Great news. All formst have been

submitted, saved and has passed ',style(kEscBmp,1613),' You can

now move on to the next level. ')

End Switch

Calculate toastType as toastType+1

There is an example app on the Omnis GitHub repo at: https://github.com/OmnisStudio
to demonstrate how you can implement Toast Messages. Search for Omnis-Toasts.

Drag and Drop: System Files
Support for dragging and dropping operating system files and file data (in the thick
client) has been simplified providing more control in your event handling code. As a

https://github.com/OmnisStudio

 Window Programming

 85

consequence there may be some minor compatibility issues, but these are outlined

below.

There is an example app to demonstrate system file drag and drop on the Omnis
GitHub repo at: https://github.com/OmnisStudio. Search for Omnis-SystemDrop.

Drop mode

The settings for $dropmode have changed: kAcceptFiles and kAcceptFileData have
been replaced with a single mode, kAcceptOperatingSystem: specifically, kAcceptFiles
has been renamed kAcceptFiles_OBSOLETE, and kAcceptFileData has become
kAcceptOperatingSystem. These changes are made automatically on conversion and
both of the old modes result in the kAcceptOperatingSystem mode; whether data can

be dropped is handled differently, as described below.

Therefore, to accept dropped files or file data from outside Omnis, you must now set
$dropmode to kAcceptOperatingSystem. Note that as in previous versions, kAcceptAll
does not select kAcceptOperatingSystem; kAcceptAll means accept drops from all

types of Omnis control.

Drop mode flags

Window controls that have the $dropmode property (as well as the thick client window
itself) have a new $osdropflags property to control what is dropped (data or files). This
is the combination of a number of new constants that can be used to specify what is

dropped:

❑ kOSDROPincludeData
If set in $osdropflags, pDragValue will include the data for objects dropped from the
operating system if the data is available and

kOSDROPwithoutDataIfOsDropLimitExceeded allows.

❑ kOSDROPfilesOnly
If set in $osdropflags, objects dropped from the operating system must all be files.
Note that on macOS, data provided by file promises may not be accepted, because

the file containing the data may only become available when dropping the object(s).

❑ kOSDROPwithoutDataIfOsDropLimitExceeded
If set in $osdropflags, $clib.$prefs.$osdroplimit can be exceeded (in which case
data is not included in pDragValue for evDrop)

On conversion, objects that were set to kAcceptFileData are now set to
kOSDROPincludeData.

Drop data limit

A new library preference $osdroplimit ($clib.$prefs) sets the maximum number of bytes
of dropped data that can be included in pDragValue for evDrop when $osdropflags
contains the flag kOSDROPincludeData; it defaults to 100000000 (100MB). The setting
kOSDROPwithoutDataIfOsDropLimitExceeded specifies if evDrop still occurs when the
limit is exceeded.

Note that combining kOSDROPincludeData and
kOSDROPwithoutDataIfOsDropLimitExceeded with a suitable drop limit provides a
good way of accepting files of arbitrary size (where the data is too large to be read into
the drag value) and also accepting other non-file objects.

Note that if you change $osdroplimit, any windows relying on its value need to be

closed and re-opened.

Event Parameters

There have been some changes with the parameters for the evDrop event: pDragType
was previously set to kDragFiles but is now set to kDragOperatingSystem. While
kDragFileData is renamed to kDragOperatingSystemData_OBSOLETE, and resolves
to the same value as kDragOperatingSystem.

https://github.com/OmnisStudio

What’s New in Omnis Studio 10.2

86

The pDragValue list uses the same column names as previous versions (for
compatibility), and has an additional column called isfile, a Boolean, which is true if the
dropped object is a file.

Notes that filedata is now always a binary value containing the contents of the object,
and filesize is a 64 bit integer.

When dropping email from macOS Mail, pDragValue has the same content (with these
additional columns) as previous versions.

File extension (macOS)

For mac OS, when a file is dragged a new fourth column pFileextmac has been added
to the pDragValue parameter which returns the macOS file extension, or is empty if the

data is from an unknown application.

Notes for existing users:

Importing classes from JSON applies appropriate conversions to constant names and
$dropmode.

The old-style Windows file drag and drop, enabled using
“classicwindowssystemdragdrop" in the “windows" section of config.json is no longer
supported.

The Catalog String Table tab, and the runtime data file browser, have been changed to
work with the new drag and drop implementation.

Menu and Toolbar Fonts (Windows)
You can now scale menu and toolbar fonts when using design DPI scaling. Specifically,
window menus and window toolbars, under Windows, scale using the design DPI
preferences and settings for the library.

There are some new entries in the config.json file that can be used to control scaling
of menus and toolbars for cases where Omnis cannot easily determine a library to be
used as the source of the scaling settings. These entries are:

❑ defaultMenuDesignDPIMode and defaultMenuDesignDPI
in the "windows" section (these only apply on the Windows platform: note that
menu items are never scaled on macOS)

❑ windowToolbarDesignDPIMode and windowToolbarDesignDPI
in the "ide" section

❑ dockingAreaDesignDPIMode and dockingAreaDesignDPI
in the "ide" section

The syntax for these entries is

❑ the mode entries: "kDPIall", "kDPIoff" or "kDPIframeOnly"

❑ the DPI values: 3 comma separated DPI values

This corresponds to the syntax of the library preference (even in the case of menus
where only the Windows platform value is used). Typically, you would set these to the
same value as those in the library preferences.

 Omnis Libraries

 87

Omnis Libraries
Starting Omnis
There is more control or reporting over when Omnis is started via a file, such as a

library file (or Omnis data file).

The sys(250) function has been added which returns a list of files which were used to
open Omnis, e.g. double-clicked from the Finder or passed on the command line. This
is empty if Omnis was opened directly by double-clicking.

In addition, a new task method called $openfiles has been added. This method can be
overridden and will be called when Omnis is used to open a file or set of files by the
OS. This will be passed the list of files as a parameter.

On Windows, the $singleinstance root preference needs to be set to kTrue to use the
same instance of Omnis to open a file, otherwise another instance of Omnis will be
started.

You can now open a library in the system File Explorer in Windows or the Finder on
macOS from the context menu for a library when listed in the Studio Browser.

Opening Initial File As Library error

The reportErrorOpeningInitialFileAsLibrary option has been added to the “defaults”
section of the config.json file (default value true) to control whether or not Omnis
reports an error trying to open the initial file as a library; this applies when a file is
dropped on the Omnis program, or the file is double-clicked. If the option is set to false

the error message is not shown.

Library Parent folder
The $parentfolder property has been added to a library and it returns the pathname of
the folder containing the library file (with a trailing pathname separator). Note that this
is only visible in the Property Manager when the properties of the library are accessed
via the Notation Inspector. Using this new property you could, for example, find the full
notation for the library folder (path) and drag it to the Code Editor.

Export to JSON & LFs
When exporting a library to JSON, LF (linefeed) characters in code are now exported
as Unicode private-use character 0x2fffe, to reduce issues with other tools (note CR

characters are also mapped to 0x2ffff).

What’s New in Omnis Studio 10.2

88

Omnis Environment
The following new features and enhancements are related to the Omnis IDE and

various tools.

Regular Expressions
The way you can construct regular expressions in Omnis in your code has been
enhanced, with the addition of the PCRE2 library (Perl Compatible Regular
Expressions version 2). PCRE2 is an open source library of functions that provides
syntax and semantics like Perl 5 for defining a search (see www.pcre.org for more
information and full documentation).

Everywhere you can use a regular expression in Omnis you can now use a PCRE2
compatible regular expression. If you want to use the old regular expression syntax,
you can set the useOldRegularExpressionSyntax configuration option to true (false is
the default, so PCRE2 is used by default); this is in the ‘defaults’ section of the
config.json file. When this is set to true, it only affects the rxpos() function.

PCRE2 provides improved error message reporting when there are problems with
regular expression syntax, and these are now reported where applicable. For example,
the command filter and minimum command length files used in the Code Editor can
contain regular expressions, so errors with these are written to the trace log at startup.

An error with the regular expression passed to the rxpos() function generates a
debugger error with the specific error text rather than a generic invalid regular
expression error.

However, when using the find field in the Code Editor, note that errors are not reported
because the editor attempts to compile and use the regular expression on every

keystroke.

With the introduction of PCRE2 the rxpos() function has been enhanced; see the
functions section.

Auto Save
There is a new Auto Save option in the File menu that when enabled means that
Omnis will save all classes that are currently open in design mode automatically; the
option defaults to disabled, meaning that you have to save a class manually or the
class is saved when it is closed (as in previous versions).

The state of the Auto Save option is saved under a new "autoSave" option in "ide"
section of the config.json configuration file. The interval between each auto save can
be configured in a new "autoSaveInterval" option, also in the "ide" section of
config.json: this is the number of milliseconds between each auto save, which is set to
1000 by default.

The Revert menu and toolbar command is not available when Auto Save is enabled.

Auto Save applies to all class and method editors except for system classes, provided
that the class is not read-only, and the method editor is not in read-only mode.

Search Catalog and Interface Manager
A new search box has been added to the Catalog and Interface Manager to allow you
to search for items, or to filter the list of items displayed, to help you to find items more
easily; this is in addition to the search box that was added to the Property Manager in a
previous version, plus there is a search box in the new Select Icon dialog.

For the Catalog, Interface Manager, and Property Manager, the Clear Search button
(x) is now to the left of the search box. In addition, the clear search button is now

always visible, and set to read-only when there is no search text to clear.

 Omnis Environment

 89

Note that the ‘propertyManagerSearch’ entry in keys.json (introduced in a previous
version) has been renamed ‘search’, and now applies to the Catalog and Interface
Manager search as well as the existing search box on the Property Manager.

The search box on the Catalog allows you to search for classes, functions, constants
and other items that appear on separate tabs in the Catalog. The search results are all
matching items (still in their groups), together with groups that have no match where
the group name matches. Using search next/previous in the Catalog cycles through all
groups identified by the search that contain at least one matching item.

The search box on the Interface Manager replaces the toolbar (which just had a
simple view menu, which is now accessible only via a context menu). The search
results are all matching methods and properties (still associated with their class or
field), together with any names in the field name list which match the search string.

For both the Catalog and Interface Manager the search function allows you to cycle
through the results using some new keys (in the IDE section of keys.json), searchNext
and searchPrev which are mapped to Ctrl+G and Ctrl+Shift+G, respectively.

Using search next/previous in the Catalog cycles through all tabs and fields identified
by the search that contain at least one matching item. So, for example, if field test has
matches in both methods and properties, ctrl+G will go to the methods first, and the
next ctrl+G will go to the properties. If a control has no methods, but it does have
properties, ctrl+G will go directly to the properties tab, and vice versa.

Property Manager
Showing all properties on one tab

You can display all the properties for a class or object on a single tab in the Property
Manager by entering * in the Property Manager Search box (in effect, this matches and
displays all properties).

Background color

The background color of the Property Manager is now set to a specific color rather than
kColorDefault. The setting has been changed in the default and blue themes, as well

as the templates.

Object Width and Height

The width and height (w x h) of the area occupied by a group of selected remote form
or window class objects is now shown on the status bar of the Property Manager.

Find and Replace
Finding Folder

You can now select classes to search using Find & Replace based on the name of their
parent folder. There is a new button in the title of the class list (with a folder icon), in the
Find & Replace window, that allows you to search for parent folder(s) using a regular
expression, and then select the classes contained in those folders in the class list.

There are new keyboard shortcuts in a new findAndReplace group in keys.json that
operate the three buttons in the class list title. In addition, you can now tab to the
tabbed pane (to operate it with the keyboard), and on Windows there are keyboard
accelerators for the buttons.

Selected Class

If the Find & Replace dialog is already open and you bring it to the top, it will now select

the top-most open class.

Search Selected Methods

The "Use selected method" and "Only lines containing selection" options have been
added to Find and Replace to help you find items while working in the Code Editor
(existing users will note these options were in versions up to Studio 8.1).

What’s New in Omnis Studio 10.2

90

To use these new options you need to select at least one character in the method: Find
and Replace searches all lines containing a part of the selection, and when it
completes, it selects the text for the searched (and possibly replaced) lines.

Code Syntax Colors in Find Log

The code syntax colors used in the Code Editor are now used to display method lines
in the Find and Replace log, and the Trace log. You can set this using two new entries
in the ide section of config.json. findAndReplaceLogUsesSyntaxColors and
traceLogUsesSyntaxColors, which are both enabled by default.

Configuration File
Errors in config.json

Errors in the Omnis configuration file config.json are now written to the trace log. As
Omnis is loaded, it parses the config.json file and if it fails, an error is written to the

trace log.

Dock Key Events (macOS)

The monitorDockKeyEvents option has been added to "macOS" section of the
config.json file to disable the Keystroke Receiving dialog at startup on macOS. If set to
false, Omnis does not attempt to monitor keyboard events from the Dock and the
dialog will not be shown. The option is set to true by default for backwards
compatibility.

Save Window Setup Shortcut
A new keyboard shortcut Shift+F3 has been added to execute the Save Window Setup
command for the current design window; the new shortcut applies to all built-in dialogs
and design windows. A new option ‘saveWindowSetup’ has been added to the IDE
section of the keys.json file to store the shortcut.

Function key shortcuts in macOS menus are shown as Fn rather than Cmnd+<n>.

View Menu
Recent Classes

The View menu lists all the classes or methods that have been opened recently. The
maximum number of classes shown in previous versions was limited to 9, but now you
can configure the number of classes shown. There is a new entry in config.json, called
"maxRecentClassEntries" in the "ide" section, which defaults to 9 (the value in earlier
versions), but can be set to any value in the range 9 to 32 inclusive.

Note that this also affects the Recent Classes hyperlink in the Studio Browser, but
since that only shows classes (or methods when the Shift key is pressed), there are
typically fewer recent class items on the recent classes hyperlink than on the main
View menu.

SQL Query Builder
You can now change the max line height in the result window in the Query Builder and
Interactive SQL windows using the context menu on the results grid; the setting is
saved in the Save Window Setup.

 Localization

 91

Localization
Localization Optimization
Localization of the built-in strings that may appear in the JavaScript Client has been
optimized to make it easier for developers, as well as reducing data size for
applications that support multiple languages by only loading the required language
file(s) if they are needed. The JS client now supports German, French, Italian and
Spanish translations by default, but support for other languages can be added as

required.

Localized String files

There is a new folder in the Omnis tree under html/scripts/ called ‘locale’. This stores .js
files which contain translated strings, using either a 2 or 4 letter language code, and
must be named in the format strings_[language code].js; for example, strings_en.js for
standard English, or strings_en_us.js for American English. Inside each file is an
object, which is a member of jOmnisStrings, containing key-value pairs to translate to
the given language. The member name should match the language code given in the
file name, therefore, for french, the strings_fr.js file contains an object jOmnisStrings.fr.
The strings_base.js file contains the base strings, and should always be present. There
is a template file called strings_template.js, which provides more information about
creating your own translations, with comments for each key-value to help you
understand what each string is used for.

Setting the supported languages

In addition, there is a new global variable, ‘supportedLanguages’, which is defined in
the htm file for a remote form (i.e. the application). This contains an array of language
codes for the supported languages. On loading a remote form, the locale of the client is
detected, and then checked against the supported languages in the array. It will look
for both the 4 and 2 letter language codes, and if found, will request strings_base.js
and the relevant localized versions. This means the JS client will only download the
strings it needs.

Compatibility

Applications that use the existing localization will not be broken by the new localization
support, but it is recommended that you switch to using the new mechanism to benefit
from the performance improvements.

Managing the Client Locale
Two new client commands have been added to allow you to override the locale on the
client device in the JavaScript Client.

❑ "setlocale" takes a row with 2 parameters
cLocale - a string containing valid locale code (e.g. "fr", "en", etc)
[cPromptToReload] - defaults to false (no dialog opens), if true pops up a no/yes
dialog asking the user if they wish to reload the page for language changes to take
affect. Defaults to No to reduce the chance of the user accidentally selecting yes
and losing any unsaved data.

❑ "clearlocale" takes a row with 1 optional parameter
[cPromptToReload] - as above

The application needs to be restarted on the client for the change in locale to have an
effect. Note that the client commands set this as a localStorage preference, so all
Omnis JS client applications (forms) on the same client device will use this setting.

What’s New in Omnis Studio 10.2

92

Report Programming
Screen Destination
The Screen print destination is now obsolete and is mapped to the Preview destination
by default. There is a new option "useScreenDestination" in the "defaults" section of
config.json and when set to true allows a report to be sent to the screen.

The Send to screen command is now obsolete and is therefore no longer shown in the
Code Editor, but will continue to work in converted libraries. In addition, the
kDevScreen destination is also hidden in the Code Assistant and in the Notation
Inspector list of devices.

Report Page Preview
The Page preview window can now be opened maximized by specifying /MAX in the
Send to page preview command parameters or in $windowprefs.

Screen Report Fields
The $pagecount and $currentpage properties have been added to screen report fields.
The current page count $pagecount is read only, while $currentpage is the currently
displayed page and is assignable at runtime. When more than one page is visible, the
value indicates the page that is most visible.

Print preferences
$macosprintstatus

The Omnis preference $macosprintstatus ($root.$prefs) has been removed, since it
had no effect in more recent versions of Omnis Studio.

OW3 Worker Objects
There are some enhancements to the IMAP, HASH, and the FTP workers, plus support
for OAUTH2 has been added to the HTTP, IMAP, POP3, and SMTP workers with the
introduction of a new OAUTH2 Worker object.

OAUTH2 Worker Object
Support for OAUTH2 authorization has been added to Studio 10.2 by adding a new
OAUTH2 Worker Object in the OW3 Worker component package, while the HTTP,
IMAP, POP3, and SMTP workers have been modified to support OAUTH2
authorization via the new dedicated worker object.

Why use OAUTH2

OAUTH 2.0 provides much improved security over and above simple username and
password schemes. It is commonly used by many different service providers, such as
Google mail, for which its use will become mandatory in 2020 (meaning less secure
apps will no longer be supported). You can read about OAUTH 2.0 in RFC 6749
(https://tools.ietf.org/html/rfc6749)

An application wishing to use a service (using HTTP, IMAP, POP3, or SMTP) requires
an Access Token of type “bearer”. The application needs to be registered with the
service, so it can identify itself to the service, and the registration process provides the
application with a Client Id and a Client Secret, that identify the application to the
service.

As an initial step, the user of the service must authorize the application to use the

service. To do this:

https://tools.ietf.org/html/rfc6749

 OW3 Worker Objects

 93

❑ The application opens a Web browser at the Authorization Endpoint (a URL) of the

service.

❑ The authenticated user agrees that the application can access the service.

❑ The server hosting the Authorization URL redirects the browser to a URL supplied
when opening the Web browser. This request contains an Authorization Code.

❑ The application makes a request to the Token Endpoint (a URL) sending it the
Authorization Code.

❑ The server hosting the Token URL returns various pieces of information to the
application, including: Access Token, Expiry of Access Token (recommended but

not mandatory), Refresh Token (optional).

At this point, the application can use the Access Token to make requests to the
service. Access Tokens are short-lived, typically being valid for about an hour. If the
Token URL server also returned a Refresh Token, the application can use that after the
Access Token has expired to obtain a new Access Token, without any further
interaction with the user. Refresh Tokens typically have a long lifetime, but may be
invalidated for various reasons, depending on the service implementation.

Obtaining Authorization

The new OAUTH2 Worker allows you to obtain an Authorization Code, exchange it for
tokens, and refresh tokens, using the $authorize() method on a background thread.
The worker also contains methods to save and load the tokens and other related
information to and from an encrypted binary block of data, which helps to protect key
pieces of information such as the Refresh Token and Client Secret.

Note that you must always use an Object Reference to create the OAUTH2Worker
object – this eliminates potential issues with the way Omnis uses the
OAUTH2Worker as a property value.

The object reference to an OAUTH2Worker object containing the authorization
information can be passed to a new $oauth2 property in the HTTP, IMAP, POP3, and
SMTP Workers to provide authorization.

What’s New in Omnis Studio 10.2

94

OAUTH2 Properties

These properties are specific to OAUTH2.

Property Description

$accesstoken The access token to be used with HTTP, IMAP, POP3 and
SMTP connections.

$accesstokenexpiry The expiry date and time of the access token (in UTC
time). #NULL means no access expiry date and time is

available.

$authorizeurl The URL of the OAUTH2 authorization endpoint.

$clientid The Client Id used in conjunction with the client secret to
identify the application to the OAUTH2 authorization

server.

$clientsecret The Client Secret used in conjunction with the Client Id to
identify the application to the OAUTH2 authorization
server.

$redirecturiserveraddress If not empty (the default value), this property overrides
localhost in the redirect URI server address, replacing
localhost with the value of this property. The default is
localhost rather than 127.0.0.1 when generating redirect

URIs when running in a thick client remote task

$refreshtoken The Refresh Token to be used to request a new access
token after the access token has expired.

$scope A string identifying the type of access required. Used as
part of the URL used to open the Web Browser at the
authorization endpoint. For example, when using Google to
access GMAIL, specify the scope as
"https://mail.google.com/".

$tokenurl The URL of the OAUTH2 token endpoint.

HTTP and General Properties

In addition to the OAUTH2 properties, the OAUTH2Worker also has various HTTP and
general OW3 properties, that for example affect how the HTTP requests it makes are
executed: the OAUTH2Worker makes two different HTTP requests: a request to
exchange an Authorization Code for an Access Token, and a request to obtain a new

Access Token using the Refresh Token.

Property Description

$errorcode Error code associated with the last action (zero means no
error).

$errortext Error text associated with the last action (empty means no
error).

$followredirects If true, the HTTP request will follow a server redirect in order to
complete the request. Defaults to false

$proxyserver The URI of the proxy server to use for all requests from this
object e.g. http://www.myproxy.com:8080. Must be set before

executing $run or $start. Defaults to empty (no proxy server).

$proxytunnel If true, and $proxyserver is not empty, requests are tunnelled
through the HTTP proxy

$proxyauthtype The type of HTTP authentication to use when connecting to
$proxyserver. A kOW3httpAuthType... constant (see below).

$proxyauthusername The username used to authenticate the user when connecting

 OW3 Worker Objects

 95

to $proxyserver using $proxyauthtype.

$proxyauthpassword The password used to authenticate the user when connecting
to $proxyserver using $proxyauthtype.

$state A kWorkerState... constant that indicates the current state of
the worker object.

$threadcount The number of active background threads for all instances of
this type of worker object.

$timeout The timeout (in seconds) for requests. Defaults to 60 with a
minimum value of 10.

$protocollog If non-zero, the worker adds a log of protocol activity as a
column named log to its wResults row. The desired value must
be set before calling $run or $start. Defaults to kOW3logNone.
Otherwise, a sum of kOW3log... constants.

OAUTH2 Standard Methods

$authorize

$authorize([iAuthFlow=kOW3OAUTH2authFlowCodeWithPKCE])

Starts the OAUTH2 authorization flow iAuthFlow on a background thread. Returns true
if the thread was successfully started. Properties of the object cannot be assigned
while $authorize() is running.

$authorize() opens a Web Browser at the authorization URL, passing the URL various
parameters in the query string, such as the Client Id using the value of the $clientid

property.

How the Web Browser is opened depends on the context in which $authorize() is
called.

When executed within the context of a thick client (non-remote) task, $authorize()
uses the $webbrowser property to control which browser it opens (note that you cannot
use $authorize() with a thick client task when running in the headless server). It should
be noted that when running in the thick client, $authorize() always uses a web browser
rather than an embedded obrowser control due to best practice considerations

documented in RFC 8252: https://www.rfc-editor.org/rfc/rfc8252.txt

When executed within the context of a remote task, $authorize() will only work if the
remote task is a JavaScript Client remote task. In this case, it uses the $showurl()
mechanism of the JavaScript Client to open a browser window or tab. Note that in this
case, you cannot execute both $authorize() and $showurl() in response to the same
JavaScript client event.

When using the authorization flows that redirect the browser to a URI, $authorize()
determines the redirect URI as follows.

For the thick client, it uses a loopback URI, to 127.0.0.1. Note that if the version of
Omnis is not a server version, Omnis will still open a server port with limited support for
OAUTH2 only, to allow the Authorization Code to be received via the redirect URI.

For the JavaScript client, $authorize() uses the RESTful URI determined from the
Omnis server configuration. Note that this means that if you are using a Web Server to
handle requests for your Omnis server, you need to set up the Omnis Web Server
plugin for both the JavaScript client and RESTful requests.

$authorize() takes a single parameter, iAuthFlow, which can have one of the following

constant values (kOW3OAUTH2authFlowCodeWithPKCE is the default):

Constant Description

kOW3OAUTH2authFlowCode The normal OAUTH2 authorization flow, where the
authorization code will be received by redirecting the
browser to a URI served by Omnis.

https://www.rfc-editor.org/rfc/rfc8252.txt

What’s New in Omnis Studio 10.2

96

kOW3OAUTH2authFlow
 CodeWithPKCE

Identical to kOW3OAUTH2authFlowCode, except that
the worker uses PKCE to further secure its requests
for an authorization code; the default iAuthFlow (see

https://tools.ietf.org/html/rfc7636).

kOW3OAUTH2authFlow

 ManualCode

Like kOW3OAUTH2authFlowCode, except that the
redirect URI is urn:ietf:wg:oauth:2.0:oob. This means
that instead of the authorization code arriving at Omnis
via the redirect URI, the user must copy the
authorization code to the clipboard from the browser
window, and paste it into Omnis or the JavaScript
client; after pasting, the Omnis application must call
the method $setauthcode() (described below).

kOW3OAUTH2authFlow
 ManualCodeWithPKCE

Like kOW3OAUTH2authFlowManualCode, but also
uses PKCE.

Note that you would normally use PKCE unless the service does not support it.

Manual code support, via the clipboard, is provided in case you do not want to open up
a port for the redirect URI when running in the thick client; however, note that not all

services support the redirect URI urn:ietf:wg:oauth:2.0:oob.

When $authorize() completes (which if successful means that is has opened the
browser, received the Authorization Code, and exchanged it for an Access Token etc) it
generates a call to the callback method $completed().

$setauthcode

$setauthcode(cAuthCode)

Returns Boolean true for success.

Only applicable to kOW3OAUTH2authFlowManualCode and
kOW3OAUTH2authFlowManualCodeWithPKCE, when the $authorize() thread is
waiting for the Authorization Code. Called from the application to supply the pasted
Authorization Code using the cAuthCode parameter.

$save

$save(&xOAUTH2[,xKey])

Saves the properties ($clientid, $clientsecret, $authorizeurl, $tokenurl, $scope,
$accesstoken, $refreshtoken and $accesstokenexpiry) to the encrypted binary buffer
xOAUTH2.

xKey is a 256 bit AES encryption key. If you omit xKey, OW3 uses a hard-coded
default key.

Returns Boolean true for success.

$save provides a convenient way to save all of the OAUTH2 parameters required for
communicating with a service. In particular, it lets you safely store the Refresh Token,
so you can minimise the number of occasions on which a user needs to authorize
access using $authorize().

You can further protect your client secret, by including the encrypted buffer generated

by $save in your release tree.

$load

$load(xOAUTH2[,xKey])

Loads the properties ($clientid, $clientsecret, $authorizeurl, $tokenurl, $scope,
$accesstoken, $refreshtoken and $accesstokenexpiry) from the encrypted binary buffer
xOAUTH2 previously generated using $save().

xKey is a 256 bit AES encryption key. If you omit xKey, OW3 uses a hard-coded
default key. You must use the same key as that used when calling $save().

Returns Boolean true for success.

 OW3 Worker Objects

 97

OAUTH2 Callback Methods

$tokensrefreshed

The OAUTH2Worker has one non-standard callback method, $tokensrefreshed. The
OAUTH2Worker generates a call to this method after it has successfully refreshed the
tokens while it is being used in conjunction with the HTTP/IMAP/POP3/SMTP worker.

$tokensrefreshed() is called with no parameters; at this point, the worker has been
updated with the new Access Token, Access Token Expiry and Refresh Token. A
typical implementation of $tokensrefreshed() would use $save() to save the current
tokens etc and then write the encrypted buffer to disk. It should be noted that calling
the server to refresh tokens can result in a different updated Refresh Token - this
needs to be used to refresh tokens the next time a refresh is required.

HTTP and General Methods

The OAUTH2Worker supports the normal methods $cancel(), $getsecureoptions() and
$setsecureoptions(). The latter two relate to how secure connections to the Token URL
are established.

HTTP Callback Methods

The OAUTH2Worker generates calls to the standard callback methods $cancelled()
and $completed(). These correspond to a call to $authorize() to start the authorization
code flow. The completion row passed as a parameter to $completed() has columns as
follows:

Column Description

errorCode An integer error code indicating if the request was successful. Zero means
success. If successful, $accesstoken, $accesstokenexpiry and
$refreshtoken have been updated using the content received from the
server; if no Access Token Expiry was received, $accesstokenexpiry is

#NULL; if no Refresh Token was received, $refreshtoken is empty.

errorInfo A text string providing information about the error if any.

scope The scope returned from the server when requesting the Access Token, if
different to the requested scope.

log If you used $protocollog to generate a log, this column contains the log
data, either as character data, or UTF-8 HTML. Otherwise, the log column

is empty.

HTTP, IMAP, POP3, and SMTP Workers

Once you have used $authorize() to obtain an Access Token, you need to make the
Access Token available to the worker with which OAUTH2 authorization is required.
You do this by assigning a new $oauth2 property of the HTTP, IMAP, POP3, or SMTP
worker:

❑ $oauth2
Property that is an object reference to an OAUTH2Worker object containing the
authorization information required to make requests to the server. Clear this
property by assigning #NULL to it. $authorize() cannot run while the
OAUTH2Worker is assigned to $oauth2

The supported workers use $oauth2 to obtain the Access Token for the request. To do
this, it uses the following logic:

❑ If there is no Refresh Token ($refreshtoken is empty), it uses $accesstoken.

❑ If the $accesstokenexpiry is #NULL (there is no expiry date and time), it uses

$accesstoken.

❑ If the expiry date time is more than 5 seconds away, it uses $accesstoken

What’s New in Omnis Studio 10.2

98

❑ Finally, it uses $refreshtoken to refresh the token(s). If successful, it generates a

call to $tokensrefreshed() in the OAUTH2Worker and it uses the new $accesstoken

You should note that there is a chance the request will fail when it is made near to the
5 second window before the Access Token expires. You should be prepared to handle
this type of error in $completed, possibly retrying the request.

HTTP

After assigning $oauth2, the parameters iAuthType, cUserName, and cPassword
passed to $init() are ignored in favour of using the Access Token stored in $oauth2.

IMAP, POP3, SMTP

After assigning $oauth2, the cPassword parameter passed to $init() is ignored in favour
of using the Access Token stored in $oauth2. Note that cUserName is still required.

OW3 Worker Request Completion
There is a new property, $alwaysfinish, in the OW3 Worker Objects external package,
to allow asynchronous requests to continue to completion after the instance containing
the OW3 object destructs; the property applies to the HTTP, IMAP, SMTP, POP3 and
FTP workers.

When the instance containing an OW3 worker closes, and the OW3 worker is
executing via a call to $start(), the worker thread continues executing until completion
in the background: in this case, no notifications will be generated, as there is not a
suitable instance to receive them.

Note that even if $alwaysfinish is true, if you shut down Omnis before the request has
completed, OW3 will cancel the request so that shutdown works correctly.

Multipart Content
There is a new static method, $splitmultipart(), in the OW3 Worker Objects external
package to allow you to split multipart content of a rest call, plus the MIME list returned
by the OW3 methods that contain body part headers.

❑ OW3.$splitmultipart(cContentType, xContent, &lMIMEList
[,iDefCharSet=kUniTypeUTF8, &cErrorText])
splits MIME-encoded multi-part xContent into lMIMEList.cContentType must include
a boundary parameter.Returns true if successful
ContentType:The content type header (must contain a boundary parameter)
Content:The binary content to split
MIMEList:Receives the MIME list created by splitting the MIME content. See the
documentation for the MailSplit command to see how a MIME list is
structured;however note that the charset in the OW3 MIME list is a kUniType...
constant
DefCharSet:The default character set used to convert character data when there is
no charset specified for a MIME text body part. A kUniType... constant (not
Character/Auto/Binary)
cErrorText:If supplied,receives text describing the error that caused $splitmultipart
to return false

The MIME list (for this call and for the other OW3 calls that generate a MIME list) now
contains an additional column named bodypartheaders. This is a row containing a
column for each non-empty header present for the body part. In addition, it has a
column named "name" which contains the content-disposition header name parameter.
All header names are normalized in the same way as those passed to RESTful
services, that is, lower-case with any - characters removed.

 OW3 Worker Objects

 99

IMAP Worker
The OW3 IMAP worker now allows you to fetch only unread messages. An IMAP
search query parameter has been added to the list messages action, to control the list
of messages in the mailbox that is returned.

The kOW3imapActionListMessages action now selects mailbox cMailboxName and
lists messages in it. vParam1 (optional) is a single column list of additional header
names to retrieve. vParam2 (optional) is an IMAP search query selecting messages to
list, e.g. UNSEEN to fetch the unread messages.

FTP Worker
New actions have been added to the OW3 FTP worker to allow you to send multiple
files/folders via an FTP client, as follows:

❑ kOW3ftpActionPutFileMulti
Upload multiple files to the FTP server. vParam is a 2 column list (col1: full local
pathname, col2: full server pathname). cServerPath must be empty

❑ kOW3ftpActionGetFileMulti
Download multiple files from the FTP server. vParam is a 2 column list (col1: full
local pathname, col2: full server pathname). cServerPath must be empty

When uploading or downloading multiple files, the row passed to $progress has an
extra column (requestNumber) which corresponds to the line number in the vParam list

currently being transferred.

The $completed method is called with a successful status if all transfers are completed
successfully. If at least one failed, the error code is 10312 (at least one transfer during
a kOW3ftpActionGetFileMulti or kOW3ftpActionPutFileMulti action failed). In addition,
the resultList column contains a list with a line for each transfer, containing error code,
error info and FTP status code.

HTTP Worker
The minimum number of parameters for $init() method in the OW3 HTTP worker is now
1, rather than 4 in previous versions, so the URI is the only required parameter. The

definition for the method is now:

$init(cURI [,iMethod=kOW3httpMethodGet, lHeaders=#NULL, vContent='',
iAuthType=kOW3httpAuthTypeNone, cUserName='',cPassword=''])

Mail Headers
The character limit of 76 for RFC2047 encoded words for mail headers has been

removed in the email OW3 workers (and the MailSplit command).

What’s New in Omnis Studio 10.2

100

Web Services
OpenAPI
Omnis now generates an OpenAPI 3.0.0 definition for a RESTful service as well as
Swagger 2.0. OpenAPI is a more up to date version of the RESTful API description
format, and Studio 10.2 now generates OpenAPI 3.0.0 definitions, as well as Swagger
2.0 definitions.

When you select a RESTful service beneath the Web Service Server node in the

browser, there are now two pairs of links:

❑ OpenAPI Definition, Save OpenAPI to File

❑ Swagger Definition, Save Swagger To File

The OpenAPI definition can be retrieved using a similar URL to that used to retrieve a

Swagger definition by replacing ‘swagger’ in the URL with ‘openapi’.

There is a new folder in clientserver/server/restful, named openapitemplates. The files
in here have the same use as those in the swaggertemplates folder, except that they
apply to OpenAPI definitions.

In addition, cors.json has new OpenAPI members that have a similar purpose to the
Swagger members.

In previous versions, you could provide a format by prefixing a description of a schema
field or HTTP method parameter with "<swagger-…>“. In Studio 10.2, you can now

provide a format using the prefix of either “<format-…>“ or "<swagger-…>“.

Media types

HTTP responses for a RESTful method can now be defined to return media types other
than application/json via a schema.

Note that if you do this, the Swagger 2 definition is incomplete, since Swagger 2 does
not allow mixed response content types. However, the new OpenAPI 3 definition for the
RESTful service does handle this correctly.

$construct parameter row
The full URL used to request a RESTful method is now passed via RESTful remote
task $construct parameter row.

There is a new column in this row: fullurl, which contains the full URL, starting with the
path to the script, e.g. /omnisrest/ws/5988/api/...

The host name used can be obtained from the host header. There is no way to
determine if the request was made using http or https.

RESTful Remote Task Superclass
A RESTful remote task can now have a superclass in another library, provided that the
superclass in the other library does not contain URIs. This allows you to use framework
libraries.

 Object Oriented Programming

 101

Object Oriented Programming
$cando and Error Handling
In previous versions there were issues when using $cando with object variables with a

missing object class, and also with object variables and the debugger.

The default behavior (since Studio 10.1), when Omnis attempts to construct an object
variable when its class does not exist, is to report a debugger error when code
attempts to use the object, e.g. via $cando. Therefore, you can now override this
behavior, for example, $cando will return kFalse for notation like
iObject.$message.$cando.

To override this behavior, you can use the new $nofatal property of object variables:
 Calculate iObject.$nofatal as kTrue

❑ $nofatal
If true, and the object instance could not be constructed because the object class
does not exist, treat this error as a warning when trying to use this object (meaning
Omnis will not enter the debugger or abort execution)

When using $cando after setting $nofatal to kTrue, the $cando will return false.

$inherited and $default
The notation $inherited and $default have been added to the help displayed in the
Code Assistant (they were hidden in previous versions).

$inherited is now present at the top level, and in $cinst for all types of instance, while
$default is available at the top level, and in $cinst but for table instances only.

In addition, you can now use $default.$attrib() as well as $cinst.$default.$attrib().

External Objects
The $isa() function now works for external objects.

JSON Components
JSON Control definition
There is a new member “uselegacycolors” for a JSON control definition; it is
automatically set to True when loading existing JSON controls so the existing colors
are used. The flag defaults to False for all new controls which means they can use
theme colors.

Commands
Queue Commands
The Queue click, Queue double click, Queue scroll and Queue set current field
commands (and their obsolete command equivalents) now return an error if the field
cannot be found. You can turn off this error by setting the new option
"reportQueueCommandFieldNotFoundErrors" to false, located in the "defaults" section
of config.json.

What’s New in Omnis Studio 10.2

102

Functions
FileOps.$selectfilesinsystemviewer
There is a new static method in the FileOps external $selectfilesinsystemviewer to
allow you to open a file or files (such as a library) in the system File Explorer in
Windows or the Finder on macOS.
FileOps.$selectfilesinsystemviewer(cFileOrFolder[,lFileList])

Opens the system file viewer (Explorer or Finder) and selects the specified file or files.

❑ cFileOrFolder
Either the pathname of a single file to select (when $selectfilesinsystemviewer is
called with a single parameter) or the pathname of the folder containing the files to
select (when $selectfilesinsystemviewer is called with 2 parameters)

❑ lFileList
A single column list of file names, specifying the files to be selected in the specified
folder

FileOps.$writecharacter()
There is a new parameter in the FileOps.$writecharacter() function that can be used to
control whether or not a BOM is added to the data when writing to the start of the file.

❑ $writecharacter(iEnc,cData[,bAppend=kFalse,bBOM=kTrue])
Writes cData to file, encoded using encoding iEnc (kUniType... but not
Auto/Bin/Char). Returns kTrue for success.
bAppend kFalse means replace entire file contents, if kTrue data is appended to
the existing data.
bBOM controls if a BOM is added or not. If true, and the data is to be written at the
start of the file, a Unicode Byte Order Marker (BOM) is added at the start of the file.

FileOps.$deletefile
The FileOps.$deletefile function has two new parameters, deleteContents and
recursive (both default to kFalse, if omitted), to allow you to delete the contents of a
folder.

❑ FileOps.$deletefile(cPath, kFalse, kFalse)
(same as if deleteContents and recursive are omitted) if cPath is a folder, the folder
will be deleted only if empty, that if no files or directories are present in the folder.
On macOS, the function checks if the only file is .DS_Store and will delete the
folder in that case. If there are hidden files in the folder, the folder and the hidden
files will not be deleted.

❑ FileOps.$deletefile(cPath, [kTrue, kFalse])
if cPath is a folder, all files inside the folder if deleteContents is true, but any
subfolders will not be deleted. Furthermore, if the folder is empty, the folder will not
be deleted.

❑ FileOps.$deletefile(cPath, kFalse, kTrue)
if cPath is a folder, it will be deleted only if empty. If there are any contents, those
will not be deleted as deleteContents is kFalse, even if recursive is kTrue.

❑ FileOps.$deletefile(cPath, kTrue, kTrue)
if cPath is a folder, it will be wiped off the disk with its contents, if any are present.

❑ FileOps.$deletefile(cFilePath)
if cPath is a file, the file will be removed regardless of the deleteContents or
recursive values - the deleteContents and recursive parameters do not impact the
behavior of deleting files, only the behavior of deleting folders.

 Functions

 103

FileOps.$createdir()
The FileOps.$createdir() functions has a new optional boolean parameter
bCreateParentDirs. If bCreateParentDirs is kTrue, FileOps will create the directory in
cPath and also any parent directories in the path that do not exist.

If bCreateParentDirs is kTrue and the directory in cPath already exists, FileOps will
return 0 (success) rather than 101215 (A file with the specified name already exists). If
bCreateParentDirs is kFalse (default), or is omitted, then the usual 101215 is returned
if directory in cPath already exists.

rxpos()
With the introduction of PCRE2 the rxpos() function has been enhanced.

A new optional final parameter called captureRow has been added to the rxpos()
function (applies when PCRE2 is used, which is now the default for regular
expressions). You can pass this a row variable that returns the captured groups
resulting from the regular expression match operation. This is a standard feature of
regular expressions – groups correspond to the parts of the regular expression
contained in parentheses (provided that the open parenthesis is not followed by ?:
indicating a non-capturing group). Groups can also optionally be named, and they are
numbered 1 to n, with various rules regarding duplication when using the | operator.
For example:

❑ When rxpos() locates nothing, it sets captureRow to empty.

❑ When rxpox() locates something, and the captureRow parameter is supplied, it
adds a column to the captureRow for each captured group, where the column name
is G<n> for group number n where the group is not named, or the group name.

The following examples will illustrate this:
Calculate cString as "2017-01-02"

Do rxpos("^(?<year>\d{4})-(?<month>\d{2})-

(?<day>\d{2})$",cString,0,0,cLen,cRow) Returns cOffset

After executing the above line, cRow is a row with three columns named year, month,
and day, with the values 2017, 01 and 02, respectively.
Calculate cString as "hey_test_ho"

Do rxpos("(hey|ho)_test_(ho|hey)",cString,0,0,cLen,cRow) Returns cOffset

After executing the above line, cRow is a row with two columns named G1 and G2,
with the values hey and ho.

You can mix named and unnamed capture groups.

binfrombase64()
A new parameter, bStripWhitespace, has been added to the binfrombase64() function,
to strip whitespace from the input data (defaults to kFalse). The syntax for the function
is now:

❑ binfrombase64(vData[,bURLEncoding=kFalse,bExpectPadding=kTrue,bStripWhite
space=kFalse])

There was a problem using the OXML base64 method (which is essentially
deprecated) so you should use this function instead, which is also faster. In addition,
the old implementation in OXML ignores whitespace in the input data, hence you are
advised to use binfrombase64() with the new parameter.

printf()
There is a new function printf() to allow you to output a string from a script:
printf(string[, newline=kTrue])

Writes the string to standard output followed by a newline character if required (the

function is ignored on Windows. Executes on macOS and Linux only).

What’s New in Omnis Studio 10.2

104

mod()
mod() now checks for integer arguments, and if so uses integer rather than floating
point operations to determine its result. The result is still returned as a number rather
than an integer.

sys(202)
The sys(202) function returns the command line parameters passed to Omnis.

In order to pass arguments to omnis.app using open, you can use --args, for example,
to start Omnis and open a library at startup you can pass the library name as the first
argument using:
open -W -a omnis.app --args /library.lbs

If the first argument passed via the command line is not a library, you can prepend it
with a - (hyphen) character. So when using sys(202), you will get all arguments passed

to Omnis, including the first argument, whether it starts with a hyphen or not.

sys(241)
A new 6th column named ‘item’ has been added to list returned by sys(241), the find
and replace log list. Where possible, this column contains an item reference either
directly to the found data, such as a method line, or to the item containing the found

data, such as a property.

sys(250)
The sys(250) function has been added which returns a list of files which were used to
open Omnis, e.g. double-clicked from the Finder or passed on the command line. This
is empty if Omnis was opened directly by double-clicking.

OJSON
OJSON.$arrayarraytolist
OJSON.$arrayarraytolist now allows integer and numeric values in the same column
(resulting in a numeric column).

JavaScript API
jOmnis object methods
All supported browsers now support RGBA colors so any related methods are no
longer relevant and have been removed. The following methods have been removed
from the jOmnis object:

❑ browserSupportsRGBA

❑ startTranslateAnimation

❑ inIE - removed as it returns false for all supported browsers

❑ ieVersion - removed as the JS client only supports IE 11 upwards

❑ setOpacity - pSetFilter parameter was removed in a previous version

 Import/Export

 105

Import/Export
Delimited Import
Delimited import now allows newline characters to be embedded within delimiters.

Omnis VCS
VCS Revisions
All class types now have the $vcsrevision property, which allows the Omnis VCS to
determine whether or not classes in a local library are up to date with the latest revision
in the VCS repository.

VCS revision property

The $vcsrevision property is the revision number of the class, and is used for classes
stored in the Omnis VCS. It is set to zero if the library was not built by the VCS (i.e. it
was created in the IDE), or if the library was built prior to Omnis Studio 10.2.

The property is read-only in the Property Manager, as it is intended for use by the
Omnis VCS library, or any custom class editing tools you may have created. It can only
be assigned by executing code.

Server Connections
When the VCS loses its network connection, the list of classes and all hyperlink options
are hidden and replaced with a Refresh option (previous versions may have issued
numerous messages when a connection was lost). Pressing Refresh will poll the
database to see if the connection has been restored, but if the connection is still down
an error message will be shown. Polling the database may still result in a wait of
several seconds before the connection is restored or any error message is shown.

Deployment
Server port
The $serverport property has been added to the $modes group ($modes.$serverport)
and returns the port on which the Omnis Server is currently listening.

Printing JPGs on Headless Server
In order to print JPEGs from an application running on the Headless Omnis Server (on
Linux), the ImageMagick package has to be installed.

Headless Server Logging
The Headless Server now logs a message when an external or external component
cannot be loaded. This is a message of type headlesserror, and includes the system
error text reporting the missing dependency that caused the component not to open.

Windows Startup Options
The Omnis startup options previously set in the Omnis.ini file have been moved into the
Omnis configuration file (config.json) under the Windows group and the omnis.ini no
longer works. Therefore, you can now specify the following under the windows group:

"HideStudiorgMessage": false,

"NoAdmin": false,

"UpdateFilesAssociations": true

What’s New in Omnis Studio 10.2

106

If HideStudiorgMessage=true the message dialog about running Studiorg when Omnis

starts up will not be displayed. If false or omitted, the message is shown.

If NoAdmin=true, Omnis will run with the current user’s access level; consequently, it
will not attempt to register file associations or event log, and this allows you to run
updates (via update.bat) if required. If NoAdmin=false Omnis will run as the Admin user

(the default behavior, as in previous versions).

If UpdateFileAssociation=false, Omnis will not attempt to set file associations.

Omnis Datafile Migration
DML Emulator
The DML emulator was released with Studio 10.0 but has been substantially re-written
for Studio 10.2 to improve performance. We would like to thank early adopters Nick
Renders, Thad Bogert, and Martin Luce for helping us to develop and test the new
emulator.

The DML emulator no longer relies on library code for most of its functionality, although
it is still used for the initial conversion of the data file to either a SQLite data file or a
PostgreSQL database.

In order to prevent conflicting emulation modes, there is a new $root preference;
$mapdmltodam which is set to either “PGSQLDAM” or “SQLITEDAM” to set the
emulation mode. The existing library preference has now become $dmlemulation, a
Boolean property which enables that library for DML emulation.

Please note that switching emulation modes will shut down the emulator, closing any
connections before re-initializing in the new mode.

What is DML Emulation?

In summary, if you have an older Omnis application that uses Omnis data files and the
Data Manipulation Language (DML) commands such as Set main file, Find, Next &
Previous, Build list from file…, you can now perform a one-time conversion of your
Omnis data file(s) to a PostgreSQL database or to a SQLite data file. By setting the
Studio root preference and the library preference mentioned above, your library
continues to execute as it did before, without any code modifications, but future-
proofed against any potential pitfalls with legacy Omnis data files.

Porting your data to a proprietary database also makes it more accessible to third-party

applications.

For further information on the DML emulation technology, please refer to the ‘Omnis
Datafile Migration’ chapter in the Omnis Programming manual on the Omnis website.

External Components
There has been a number of changes in the External Components interface, so please
refer to the online manual for full details. The following functions or items have been
changed or added:

❑ WNDstartDrawEx()

❑ WNDendDrawEx()

❑ WNDstartDraw()

❑ EXTfile::deleet()

https://omnis.net/developers/resources/onlinedocs/ExtcompSDK/00intro.html

 External Components

 107

What’s New in
Omnis Studio 10.1

Omnis Studio 10.1 contains a number of enhancements in the Code Editor (introduced
in Studio 10.0), plus some updates for JavaScript Remote forms and various JS
controls. The following features and enhancements have been added to Omnis Studio
10.1:

❑ Variable Panel in Code Editor
The Variable panel is a powerful addition to the Method Editor that allows you to
view and modify variables while you debug and step through your code; as
execution pauses, the Variable Panel displays the values of all the current
variables, and you can drill down into the hierarchy of objects and variables

❑ Code Editor & Code Assistant
There are many enhancements in the Code Assistant including: Method name
matching to allow you to find a method name as you enter code; Command
Keywords are added to a command automatically when pressing Tab, enabled
using a new option in the Line menu; a new option Copy Value in the Variable
menu allows you to copy the value of a variable

❑ SQL Worker Lists
you will be able to specify that a SQL list or row uses a SQL Worker Object of the
same DAM type as the SQL session object to perform SQL operations
asynchronously in a separate self-contained thread (or synchronously if preferred).

❑ Managing Timeouts for Remote tasks
Remote Tasks used with the JavaScript Client now have a concept of being
‘suspended’ to allow greater control over how client connections are managed
using the new properties $suspendedtimeout and $suspendconditions

❑ Toast Messages
There is a new client command to allow you to popup "Toast messages" (small

temporary notifications) on the client, similar to Android toast messages

❑ New and Updated JavaScript Components
The JS Video control has been rewritten to remove its reliance on jQuery, and as a
consequence the control has some new properties and events; in addition, the Data

Grid, Toolbar, Date Picker, and Tree List JS controls have all been enhanced

❑ Line: command
There is a new command, Line:, which is like the Text: command, except that it just
adds a single line of text to the text block; there is a new external editor (similar to
the JavaScript: and Sta: editors) to allow you to add consecutive sequences of
Line: commands

❑ OBrowser for macOS
The macOS version of OBrowser now uses the Chromium Embedded Framework
(CEF), which the Windows version of OBrowser already uses; the macOS version
of OBrowser now supports the standard OBrowser CEF configuration settings using
the cefSwitches configuration item in the config.json (as on Windows)

❑ New Window Class Controls & Animation
There is a new library and object property, $animateui, that allows you to animate
certain window class controls. Tree Lists have the new property, so when enabled
the contents of a node will animate when it opens (also used in some parts of the
Studio IDE); plus the Tab Strip has some new type constants to animate the tabs.
There are two new window class External Components: an iOS-style Switch control

and a Multibutton (both need to be loaded into the Components Store)

What’s New in Omnis Studio 10.1

108

❑ Trace Log
The Trace Log has been added to the Studio browser, available via a new node in
the Studio Browser tree list, which shows the current number of lines in the log; the
new view of the trace log behaves the same as the existing trace log (except there
is no max lines setting)

 Code Editor

 109

Code Editor
The Code Editor (Method Editor) introduced in Studio 10.0 has had a number of

enhancements, including several in response to customer feedback.

Variable Panel
The Variable panel was introduced for Remote Debugging in Studio 10.0 but is now
available in the standard Code Editor/Method Editor in Studio 10.1.

The Variable panel allows you to view and modify variables while debugging: note it is
only populated when execution pauses, such as with a breakpoint. After you resume
execution, it remains populated (but disabled) for a short time, until either execution
pauses again (when it updates) or execution does not pause soon enough (in this case
it clears).

When execution pauses, the focus moves to the variable panel. For example, while
stepping through code the Variable panel will show $cinst, the task and instance
variable values, and the values of any watched variables: see the Variable panel
highlighted in red below.

Viewing Variable Data

The variable panel displays a hierarchy of controls that allow you to drill down into the
data. Each time the debugger pauses execution, it refreshes each level of the hierarchy
until it reaches a level which is no longer valid, e.g. you might drill down into a local list
variable, and execution pauses in a different method, so the local list is no longer valid,
so in this case the panel will display the local variables of the new method.

In many cases, the panel displays variables in a grid using either the row or list
representation of the grid as appropriate. The grid display for a variable or list cell
shows a text representation of the value. This may be either its value, or it may be
some other representation, e.g. the number of lines in a list, or an object instance
name. The grid is read-only, allowing you to use the arrow keys or tab/shift-tab to move
around the grid.

As you move around the grid, the current cell is highlighted, and the data type of the
current cell is displayed in the status bar below the grid.

What’s New in Omnis Studio 10.1

110

Sometimes a cell represents data such as a list or an object – in this case, you can drill
down to view the contents of the cell by either clicking on the cell, or by pressing the
Return key. After drilling down, a back button appears in the area above the grid, that
you can use to navigate to the previous level, or alternatively you can press
Backspace.

You can Ctrl/Cmd+click on a cell that would normally drill down, in order to give that
cell the focus.

Buttons to the right of the grid enable, disable or check depending on what you can do
with the current cell.

When enabled, you can click on the Modify button, or press the Return key, to edit the
variable value. While in edit mode, the remainder of the window disables, apart from
Cancel and Save buttons. You can use the Escape key to cancel, and the Return key
to save the value (i.e. the key specified as saveModifiedVariable in keys.json): note
that the Return key does not allow you to save the variable if it makes sense to add
returns to the data being edited.

There is also a button to toggle the current value between NULL and empty.

Top Level Variable Panel

When you first pause execution, the debug window displays the top-level variable
panel. This allows you to view Auto, Task, Class, Instance, Local, Parameter, Event
Parameter, File and Hash variables. Auto comprises variables identified from the line
before the current line (if any), the current line, and up to 2 lines after the current line.

The top of the top-level variable panel allows you to select the currently displayed

scope:

You can either click on a button (heading), or type its first letter when the variable panel
has the focus, to display the scope. Save Window Setup will save the current scope.

With the exception of the File scope, each scope displays its variables in a grid. The file
scope initially displays a list of file classes. You can then drill down into a file class, in
order to view its values.

For task, class and instance variables, the panel shows the values for all levels of the
inheritance hierarchy, with the names of inherited variables shown in the inherited
color.

Object Variable Panel

When you drill down into an object or object reference, the panel displays properties
and/or variables. The top of the panel looks like the following:

In the case of a non-visual object, all the buttons at the right are hidden, and the panel
just shows properties. In the case of a sub-classed non-visual object, all buttons are
present and enabled. In the case of an object that is not sub-classed from a non-visual
object, the properties button is disabled.

As for the top-level panel, you can either click on a button, or type its first letter when
the variable panel has the focus, to display the scope.

List or Row Variable Panel

For a row, this is a straightforward grid. When you drill down into a list, the panel
initially displays the first 64 lines (or $linecount if less than 64) of the list. Next and
Previous buttons at the top-right of the panel allow you to read more lines:

 Code Editor

 111

If you hold the Shift key while pressing the button, the panel reads all data in the
direction specified, in chunks until there is no more. While doing this, it may display a
working message (if it takes long enough), which you can use to stop any further data
being read.

Each time you step, and the variable remains in scope, the panel initially updates with

the chunk of data from the start of the current scroll position.

You can modify the current line and selection of the list using the buttons on the
variable panel. These prompt for the new current line, or changes you want to make to
the selection.

Item Reference Panel

When you drill down into an item reference that has properties (rather than an item
which is a reference to a variable), the panel displays the property values of the item.
You can use this panel to modify values for which $canassign is kTrue, provided that
they are of a suitable data type for editing.

Large Character

Character variables containing more than 128 characters are displayed as their length
followed by a preview of the start of the data. You can drill down into the variable,
displaying a character variable panel. When you first drill down, this displays up to the
first 64k characters. Next and Previous buttons at the top-right of the panel allow to to

read more chunks:

If you hold the Shift key while pressing the button, the panel reads all data in the
direction specified, in chunks until there is no more. While doing this, it may display a
working message (if it takes long enough), which you can use to stop any further data

being read.

Each time you step, and the variable remains in scope, the panel initially updates with
the chunk of data from the start of the current scroll position.

If you edit the data, the edit applies to the entire variable value, i.e. the new value
comprises any data on the server before the loaded data, followed by the edited loaded
data, followed by any data on the server after the loaded data.

Binary

To view and edit a binary variable, you always need to drill down. You are then
presented with a hex binary editor grid. When you modify the variable, a button on the
right provides various binary editing operations. The binary panel works in a similar
way to the character panel, with next and previous buttons.

Picture

You can drill down into a picture variable and edit it.

Boolean

Boolean variable values can be Empty, False or True. These can be set using the
variable grid drop list.

Keyboard Shortcuts
Various keyboard shortcuts have been added for the Code Editor or Remote debugger,
and a small number of shortcut keys have changed (from 10.0). All the keyboard
shortcuts can be viewed or edited in the $keys Omnis preference in the Property
Manager or the ‘keys.json’ configuration file.

Modify Class and Modify Methods

The Modify Class and Modify Methods keyboard shortcuts are now configurable in the
keys.json file. The new shortcuts are named modifyClass, modifyMethods and
modifyFieldMethods and appear in the new "ide" group in keys.json.

What’s New in Omnis Studio 10.1

112

modifyMethods and modifyFieldMethods also apply to the window, remote form, and

report class editors.

modifyMethods also applies to the class browser.

The default for the modifyThisClass shortcut in the methodEditorAndRemoteDebugger
section of $keys has changed to F3.

Clear Method Stack

There is a new keyboard shortcut for Clear Method Stack, which is Alt+K on Windows,
or Cmnd+Opt+K on macOS. The new shortcut is clearMethodStack in the remote
debugger and method editor group in $keys.

Go point

You can Shift click in the left margin to set the Go point, and there are configurable

keyboard shortcuts for Go, Step, Set Go point, etc.

Win & macOS Keyboard Shortcuts

The following keyboard shortcuts are available in Studio 10.1:

Windows
shortcut

macOS
shortcut

Description Keys.json item

Alt+A Cmnd+Opt+A Replace all in method replaceAllInMethod

Alt+B Cmnd+Opt+B Disable breakpoint disableBreakpoint

Alt+C Cmnd+Opt+C Match case matchCase

Alt+E Cmnd+Opt+E Enable breakpoint enableBreakpoint

Alt+F Cmnd+Opt+F Disable all breakpoints disableAllBreakpoints

Alt+G Cmnd+Opt+G Enable all breakpoints enableAllBreakpoints

Alt+H Cmnd+Opt+H Open Edit helper openEditHelperDialog

Alt+I Cmnd+Opt+I Debugger interrupt debuggerInterrupt

Alt+J Cmnd+Opt+J Set list selection setListSelection

Alt+K Cmnd+Opt+K Clear method stack clearMethodStack

Alt+L Cmnd+Opt+L Set list current line setListCurrentLine

Alt+M Cmnd+Opt+M Toggle read-only
mode

toggleReadOnlyMode

Alt+N Cmnd+Opt+N Toggle null and empty toggleNullAndEmpty

Alt+R Cmnd+Opt+R Replace next in
method

replaceNextInMethod

Alt+S Cmnd+Opt+S Save modified variable saveModifiedVariable

Alt+T Cmnd+Opt+T Set breakpoint

condition
setBreakpointCondition

Alt+U Cmnd+Opt+U Duplicate line duplicateLine

Alt+V Cmnd+Opt+V Go to Variables panel gotoDebuggerVariables

Alt+W Cmnd+Opt+W Whole words wholeWords

Alt+X Cmnd+Opt+X Regular expression regularExpression

Alt+Y Cmnd+Opt+Y Side by side sideBySide

Alt+Z Cmnd+Opt+Z Binary edit operations binaryEditOperations

 Code Editor

 113

Windows
shortcut

macOS
shortcut

Description Keys.json item

Ctrl+/ Cmnd+/ Toggle comment toggleComment

Ctrl+[Cmnd+[Move up stack moveUpStack

Ctrl+] Cmnd+] Move down stack moveDownStack

Ctrl+0 Cmnd+Opt+0 Go to Task variables gotoTaskVariables

Ctrl+1 Cmnd+Opt+1 Go to Class variables gotoClassVariables

Ctrl+2 Cmnd+Opt+2 Go to Instance vars gotoInstanceVariables

Ctrl+3 Cmnd+Opt+3 Go to Local variables gotoLocalVariables

Ctrl+4 Cmnd+Opt+4 Go to Parameters gotoParameters

Ctrl+5 Cmnd+Opt+5 Go to Docs panel gotoDocumentation

Ctrl+6 Cmnd+Opt+6 Go to RESTful panel gotoRESTfulPanel

Ctrl+7 Cmnd+Opt+7 Go to code panel gotoCode

Ctrl+8 Cmnd+Opt+8 Go to method tree gotoMethodTree

Ctrl+D Cmnd+D Select word selectWord

Ctrl+E Cmnd+E Execute method executeMethod

Ctrl+F Cmnd+F Find in method findInMethod

Ctrl+G Cmnd+G Find next in method findNextInMethod

Ctrl+H Cmnd+H Replace in method replaceInMethod

Ctrl+I Cmnd+I Insert before insertBefore

Ctrl+L Cmnd+L Go to line number gotoLineNumber

Ctrl+M Cmnd+M Insert method at end insertMethodAtEnd

Ctrl+N Cmnd+N Insert after insertAfter

Ctrl+R Cmnd+R Next error nextError

Ctrl+U Cmnd+U Lower case selection lowerCaseSelection

Ctrl+Shift+B Cmnd+Shift+B Toggle breakpoint toggleBreakpoint

Ctrl+Shift+C Cmnd+Shift+C Clear code
breakpoints

clearCodeBreakpoints

Ctrl+Shift+D Cmnd+Shift+D Delete selected
methods

deleteSelectedMethods

Ctrl+Shift+E Cmnd+Shift+E Trace trace

Ctrl+Shift+G Cmnd+Shift+G Find previous in
method

findPreviousInMethod

Ctrl+Shift+I Cmnd+Shift+I Inherit and override
method

inheritAndOverrideMethod

Ctrl+Shift+J Cmnd+Shift+J Clear variable
breakpoints

clearVariableBreakpoints

Ctrl+Shift+K Cmnd+Shift+K Delete current line deleteCurrentLine

Ctrl+Shift+L Cmnd+Shift+L Select line selectLine

What’s New in Omnis Studio 10.1

114

Windows
shortcut

macOS
shortcut

Description Keys.json item

Ctrl+Shift+M Cmnd+Shift+M Superclass methods superclassMethods

Ctrl+Shift+N Cmnd+Shift+N Show method tree showMethodTree

Ctrl+Shift+O Cmnd+Shift+O Toggle one-time

breakpoint
toggleOneTimeBreakpoint

Ctrl+Shift+R Cmnd+Shift+R Previous error previousError

Ctrl+Shift+S Cmnd+Shift+S Step step

Ctrl+Shift+T Cmnd+Shift+T Step out stepOut

Ctrl+Shift+U Cmnd+Shift+U Upper case selection upperCaseSelection

Ctrl+Shift+V Cmnd+Shift+V Step over stepOver

F1 F1 Opens the Omnis Help
using the syntax item

under the pointer

(Not configurable)

F3 F3 Modify this class modifyThisClass

F5 F5 Go point go

F7 F7 Fix error fixError

F8 F8 Modify specified class modifySpecifiedClass

F10 F10 Method history

backwards
methodHistoryBackwards

Shift+F1 Shift+F1 Opens the Omnis Help
using the syntax item
under the pointer

(Not configurable)

Shift+F2 Shift+F2 Set Go point setGoPoint

Shift+F4 Shift+F4 Pin bottom panel pinBottomPanel

Shift+F5 Shift+F5 Hide bottom panel hideBottomPanel

Shift+F6 Shift+F6 Show editor panel showEditorPanel

Shift+F7 Shift+F7 Show debug panel showDebugPanel

Shift+F9 Shift+F9 Show variable panel showVariablePanel

Shift+F10 Shift+F10 Method history
forwards

methodHistoryForwards

Method Name Matching
A new keypress has been added to the Code Editor to allow you to search for a

method name where the name of a method is required in a line of code.

You can press Shift-space after entering a string in the code assistant and any
possible matching method names are added to the help list. For example, you could
enter: Do code method test and then press Shift-space, and the Code Assistant
displays all strings containing “test” that can be used as a method name parameter of
Do code method.

For notation, if you enter $test and then Shift-space, the code assistant only shows
matching strings that are notation (start with $) and contain “test”.

 Code Editor

 115

Command Keywords
There has been a number of improvements to the handling of optional keywords for

commands.

There is a new option on the Code Editor Line menu, Tab Adds Missing Optional
Keyword, which is enabled by default. In this case, pressing Tab for commands that
have optional keywords, such as Do, For and Enter data, the Code Assistant appends
the optional keyword(s) to the command, ready for you to enter its parameter(s). If you
do not want the keyword added by tab, undo will remove it.

This occurs when the cursor is somewhere in the command, the command does not
already have the missing keyword(s), and no characters are selected. For example,

pressing tab after entering Do $cinst.$test() will add the “Returns” keyword.

In the case of the For and For each line in list commands, tab will cause the keywords
“from”, “to” and “step” to be added in turn.

The state of the Tab Adds Missing Optional Keyword option is saved with the window

setup.

Fonts
The Code Editor now supports variable-width fonts (Studio 10.0 only allowed fixed
width fonts in the code editing area). Therefore, the various elements of the Code
Editor, including the code area and method list, can now use any of the default fonts
provided by the current operating system: e.g. on Windows Segoe UI and Consolas are
used as the default fonts. You can change the fonts used under the View>>Fonts
option: the Reset option lets you return to the default fonts for your OS.

Variable Menu
There is a new option in the Variable context menu, "Copy Value", to allow you to copy

the current value of the variable.

Code Conversion
Print report command

The code converter converts a Print report command with no instance name, but with
constructor parameters, by adding * as the instance name (in previous versions this
was causing a conversion error). For example, Print report (list) becomes Print report *

(list) after conversion, which executes in exactly the same way.

Text: command

The code converter no longer maps open parentheses in Text: command to ['(']. As
part of this change, the Code Assistant now behaves differently when you are typing
the text for a Text: command. When you type (at the end of the text, the code assistant
opens, and displays the options for the Text: command. You can either select one of
the options or carry on typing something else. In the latter case, Omnis now treats the
characters you type as text rather than options.

Find and Replace
The Find and Replace function in the Code Editor has been improved.

When you execute the Find or Replace commands while the find or replace panel is
open, the editor now sets the focus to the find field and selects all the text.

The content of the find field is either:

❑ The text currently selected in the editor, provided that it is all on one line

❑ Or if no text is currently selected or the selected text spans lines, and highlight
syntax words is turned on, the current syntax word

❑ Or if no text is currently selected or the selected text spans lines, the current search
data.

What’s New in Omnis Studio 10.1

116

Inherited Methods
Showing Inherited Methods First

There is a new option on the View menu of the Code Editor, Show Inherited Methods
First, which allows you to display inherited methods at the top of the methods list in the
Code Editor; the option defaults to off which means inherited methods will be shown
after all other methods at the bottom of the list, as in previous versions.

In addition, the remote debug server configuration has a new option (Show inherited
methods first in method lists) which controls the information returned by the server to
the client, and therefore the display in the remote debug window. The remote debug
server dialog has been updated to allow this option to be edited.

Editing inherited methods

The F8 shortcut now works for inherited methods. So if you press F8 on the code line

Do $inherited.$test() it will load the $test method in the inherited class.

List Field References
The Code Assistant now includes list column names from the current definition of a
variable, and assistance for the target of a field reference variable.

Lists can be defined when debugging code, for example, when the method editor is
attached to an instance, or when the variable is a class variable. The target of a field
reference variable can be determined when execution is stopped at a breakpoint.

Entering Quotes, Braces, and Square Brackets
There is a new mechanism in the Code Assistant to detect situations where
automatically supplying the ” (closing quote) after typing an “ (opening quote) makes

sense.

Similarly, a } (closing brace) is inserted automatically where it makes sense after typing
{ (open brace), or a] (closing square bracket) is inserted after you enter a valid
calculation after entering an [(opening square bracket); this includes the case when

entering a calculation at the end of the parameter for the Sta: command.

Overtyping closing quotes and brackets

Note that when entering a string, if the caret is positioned just before a closing quote,
and you type the same quote character, the editor overtypes the closing quote rather
than inserting another. The same overtyping will occur with closing braces and closing

square brackets.

Construct Parameters
Where possible, the Code Assistant help window now expands “params...” for $add,
$open, etc to show the constructor parameters of the class referenced. Omnis
identifies the class name that precedes the method name in your code (e.g.

classname.$open), and will show the construct parameters for the class.

Copying Code
When you copy text from the Code Editor, Omnis now copies the syntax coloring and
other formatting, to allow you to paste the code into a word processor or an email and
retain the colors and formatting. The code is copied in HTML format.

Unicode Characters
The handling of Unicode characters >= 0x250 in the Code Editor has been improved.

The Code Editor now selects a smaller font size, if necessary, for all Unicode
characters >= 0x250 contained in a string. On retina displays (on Win and macOS), the
display of these characters is improved, using the default Code Editor font. On non-

 Code Editor

 117

retina displays, it may be necessary to increase the font size to get a reasonable

display.

Character Constants
The constants kHash (# character), kLeftSB and kRightSB (left and right square
bracket) have been added to allow you to insert those characters into text. If you wish
to create a constant for double hash, you could initialise a variable with the value

con(kHash,kHash).

Inline Comments
When Omnis encounters a space character followed by ## at the end of a string it
treats it as the start of the inline comment, so if space## appears in a string it will be
treated as an inline comment. To overcome this, you can enter <space>## in a string

and it will not be interpreted as an inline comment.

Read-only Mode
The "Read-only mode" option on the Modify menu in the Code Editor has been
improved. When this menu is enabled, you can toggle the editor between read-only
and write mode using the new keyboard shortcut Alt+M / Cmnd+Opt+M (stored in
$keys). The method editor now stores the state of "Read-only mode" with the Window
Setup.

VCS and Read-only mode

If you are using the Omnis VCS, the VCS read-only state will override the "Read-only
mode" of the Code Editor. In addition, you cannot toggle the state using the Modify
menu, and if you perform Save Window Setup, the saved state of "Read-only mode"
will be unchanged.

Toggle Comment
Empty method lines are no longer commented out when using the Toggle comment
command or Shortcut key: this applies when multiple selected lines may include empty

code lines.

Rename Variable
A Rename Variable option has been added to method editor Variable context menu
and parameter helper to allow you to rename a variable in your code directly (rather
than having to go to the Variable pane); the option applies to class, instance, local and

parameter variables.

Variable Descriptions
The variable description is now included in variable value tooltips.

File Class Field & Library Names
When unique field names is true, the Code Editor does not enter a file class name
prefix when you enter a file class field/variable name into the Calculate command, for
example, for file classes in the same library as the class being edited. There is a new
configuration item called ‘checkFileClassPrefixBasedOnUniqueFieldNames’ to control
this behavior; the new item is true by default.

When unique field names is false, checkFileClassPrefixBasedOnUniqueFieldNames
requires that you enter a file class name prefix, for file classes in the same library as
the class being edited.

In addition, the Code Assistant now only shows file class field names at the top level
when unique field names is on; so if unique field names is off, the list just includes the
file class names.

What’s New in Omnis Studio 10.1

118

And finally, the Code Assistant now includes library names at the top level, to allow

references like lib.file.field to be entered, or lib.<library notation> to be entered.

Obsolete Commands
All the obsolete commands were hidden (removed) from the Code Editor in Studio
10.0, however for backwards compatibility some of these commands, listed below,
have been reinstated in 10.1. See the appendix for a list of obsolete commands that

have been removed from the Code Editor and will be commented out on conversion.

There is a new option on the Filter Commands menu in the method editor, Command
List Can Show Obsolete Commands (defaults to unchecked), which allows you to
view the obsolete commands that have not been removed and are still available in the

Code Editor.

To confirm, the following Obsolete commands are no longer removed or commented
out during conversion in Studio 10.1, and will continue to work as expected.

Clear task control method OBSOLETE

COMMAND

Clear window control method OBSOLETE
COMMAND

Disable fields OBSOLETE COMMAND

Enable fields OBSOLETE COMMAND

Hide fields OBSOLETE COMMAND

Queue click OBSOLETE COMMAND

Queue double-click OBSOLETE COMMAND

Queue scroll OBSOLETE COMMAND

Queue set current field OBSOLETE COMMAND

Redraw named fields OBSOLETE COMMAND

Redraw numbered fields OBSOLETE
COMMAND

Redraw windows OBSOLETE COMMAND

Send to a window field OBSOLETE COMMAND

Set return value OBSOLETE COMMAND

Set task control method OBSOLETE
COMMAND

Set window control method OBSOLETE
COMMAND

Show fields OBSOLETE COMMAND

SNA do not perform default action OBSOLETE
COMMAND

SNA perform a Cancel OBSOLETE COMMAND

SNA perform a shift-tab OBSOLETE COMMAND

SNA perform a tab OBSOLETE COMMAND

SNA perform an OK OBSOLETE COMMAND

SNA perform command OBSOLETE COMMAND

SNA perform default action OBSOLETE
COMMAND

SNA remain on current field OBSOLETE
COMMAND

SNA set current field OBSOLETE COMMAND

Hide design & commands menus OBSOLETE
COMMAND

Test if command available OBSOLETE
COMMAND

Store window OBSOLETE COMMAND

Set palette when drawing OBSOLETE
COMMAND

Set return value OBSOLETE COMMAND

During conversion, consecutive Set return value OBSOLETE COMMAND value and
Quit method commands (the latter with an empty parameter) are combined into a
single command Quit method value. Note that when checking for consecutive
commands, Omnis skips comments and empty lines.

Call Method OBSOLETE COMMAND

The Call method OBSOLETE COMMAND is converted to the Do code method
command using the same parameter as the old command.

SQL Worker Lists

Currently, you can define a list or row variable from a SQL class (query, schema or
table class), and associate a SQL session object with the variable in order to perform
various SQL operations on the list, e.g. populate the list from the database, insert a row
into the database.

This new feature allows you to specify that the SQL list or row will use a SQL Worker
Object of the same DAM type as the SQL session object to perform SQL operations

 SQL Worker Lists

 119

asynchronously (or synchronously, if preferred). Because the worker can run

asynchronously, there are some differences in the way that you can use a table class
from which the list or row is defined, compared to the way you use the table class with
a SQL session object, as in previous versions of Studio. Specifically, there is less
scope to override SQL methods using the table class because of the need to execute
the worker in a separate self-contained thread.

Using a Worker in a SQL List or Row
$useworker and $synchronous

If you want to use a worker object with your SQL list or row, you need to assign a new
property, $useworker to kTrue. $useworker must beassigned after assigning
$sessionobject, and once you have assigned $useworker, you can no longer assign
$sessionobject, or access $statementobject (the latter is destroyed if present when

$useworker is assigned). $useworker cannot be assigned to kFalse.

In addition, there is a new property $synchronous: if true, and $useworker is true, the
worker object for the schema or table instance executes synchronously in the current
thread rather than asynchronously in a separate thread. $synchronous defaults to false
(meaning use another thread).

In addition, Omnis does not expose the worker properties $waitforcomplete and
$cancelifrunning.

$waitforcomplete will always be kTrue, to make sure the application is notified of the
success or failure of an operation, and $cancelifrunning is not relevant - the table will
not invoke a new request until the previous request has completed - requests are
queued by the table instance while the worker is busy processing a request.

Selecting & Fetching Data
Non-worker SQL lists and rows can operate in a nice synchronous manner. So
$select() can be used to generate a result set, and $fetch() can be called multiple times

to retrieve the result set.

SQL Worker based lists and rows cannot run in this simple synchronous manner,
because the result set is generated by the worker in a separate thread. Therefore,
worker SQL lists and rows have a new method, $selectfetch that performs both the

select and the fetch of the data. It has the following definition:

❑ $selectfetch()
$selectfetch([bDistinct=kFalse, iMaxRows=1, bAppend=kTrue, cText,…])

Note that $selectfetch() cannot be used with a row variable defined from a SQL class,

so if you want to fetch data using a worker you must define a list from the SQL class.

Note also that you cannot override $selectfetch() in a table class. The parameters are
as follows:

❑ bDistinct
Pass this as kTrue to make the worker use a SELECT DISTINCT query rather than
SELECT.

❑ iMaxRows
The maximum number of rows to fetch. Must be between 1 and 10000000

inclusive.

❑ bAppend
Pass this as kTrue to append the fetched data to the list, kFalse to replace the list
contents with the fetched data.

❑ cText,…
Any further parameters are treated as SQL text and appended to the generated
SELECT or SELECT DISTINCT query.

What’s New in Omnis Studio 10.1

120

Any errors that are detected before invoking the worker object, result in a call to

$sqlerror in the table instance.

After fetching the data, the worker generates a notification to $completed in the table
instance.

Inserts, Updates and Deletes
When using a worker, you cannot override $insert, $update or $delete in a table class.

When you execute these methods via a worker, the table instance copies the current

values of the affected row (rows for $update) into the parameter list for the worker, and
then starts the worker.

Any errors that are detected before invoking the worker object, result in a call to
$sqlerror in the table instance.

On completion, the worker generates a notification to $completed in the table instance.

Smart List Methods
When using a worker, you cannot override $dowork, $doinserts, $doupdates,
$dodeletes, $doinsert, $doupdate or $dodelete. Also, you cannot call $doinsert,
$doupdate or $dodelete.

When you call $dowork, $doinserts, $doupdates or $dodeletes, the table instance
generates a single query for each of the relevant operations insert, update and delete.
The instance then copies bind variable values into a list, for each set of rows to be
inserted, updated or deleted. Finally, the table instance starts the worker with the
copied data as its parameters. When the worker completes, the worker generates a
notification to $completed, that identifies any rows for which an error occurred, with
information about the error.

Note that as soon as you call $dowork, $doinserts, $doupdates or $dodeletes, the
smart list updates just before starting the worker

Any errors that are detected before invoking the worker object, result in a call to
$sqlerror in the table instance.

Completion Row
The table instance properties $rowsaffected and $rowsfetched are not relevant when
using a worker.

$completed in the table instance is passed a row variable parameter with columns as
follows:

❑ errorcode
An error code. Zero means the worker was successfully passed the query and bind
variables. Note that the query or queries may still have failed - see the errors
column.

❑ errortext
Error text describing the errorcode.

❑ work
The list of queries and bind variables that were passed to the worker. This has the

usual structure for SQL workers - two columns, query and bindvars.

❑ errors
If errorcode is zero, this is a list of queries that generated a SQL error of some sort.
This has the same structure as the Errors column generated by a SQL worker in the

worker completion row.

❑ rowsFetched
If a call to $selectfetch successfully fetched some rows, this is the number of rows
fetched.

 JavaScript Remote Forms

 121

JavaScript Remote Forms
Managing Timeouts in Remote Tasks
There is a new mechanism to handle timeouts in remote tasks.

Remote Tasks used with the JavaScript Client now have a concept of being
‘suspended’ to allow greater control over how client connections are managed. A task
may (optionally) be suspended if the web page is sent into the browser’s persistent
cache, or if the page becomes hidden (e.g. the user switches tabs).

When a task is suspended, it can automatically transition to a shorter timeout. An event
is also fired on the task, so you might also want to take this opportunity, for example, to
close your database or push connections.

A benefit of this is that it much improves the chance that Omnis will receive some kind
of notification that mobile apps have gone away or have been killed by the user/OS,
and will not leave the remote task open indefinitely.

Suspend Properties

To support this, Remote Tasks have two new properties:

❑ $suspendconditions
A set of zero or more kSuspendCondition… values to indicate under which
circumstances the client should tell the server to suspend the task.

❑ $suspendedtimeout
The time (in minutes) the task will survive for while suspended. Zero means never

suspend the task (the default) and -1 means suspend, but use the value of $timeout

The conditions under which the client may suspend are:

❑ kSuspendConditionCache
The browser has stored the full page, including its state, in its back/forward cache.
Support for this varies by browser (Chrome does not seem to support it), but it
generally occurs when the user navigates away from the page using the browser’s
back/forward navigation buttons.
Note: Fields with an $autocomplete property set to “off” may be cleared when the

client is sent to the cache.

❑ kSuspendConditionInactive
The page is no longer visible. E.g. the user has changed tab, minimized the
browser or switched desktop.

If the Task times out while the client is suspended, you will receive a "You have been
disconnected..." message on resuming. You can override this, as usual, by
implementing a client-executed "$ondisconnected" method on your form, which returns
true.

Important Note: The HTML templates have all been updated as part of this
enhancement, therefore you need to update any .htm files on your web servers to
match, otherwise you will get errors or leak Remote Tasks.

Remote Tasks Events

Remote Tasks have two new events:

❑ evSuspended & evResumed
which will be called when the client is suspended or resumed, respectively. Both
events receive a pSuspendCondition parameter with a kSuspendCondition value
to indicate whether the client was suspended to the browser’s cache or the page
was hidden.

What’s New in Omnis Studio 10.1

122

Remote forms Events

When the client is sent to/resumed from the cache or becomes hidden/visible again, an
attempt will be made to call a client-executed form method named “$suspended” or
“$resumed” on your main form.

This happens regardless of whether the Remote Task is actually suspended, so can be
made use of in serverless-client apps, or if you just want to react to the page becoming

visible again without using the suspend functionality.

These methods receive the following parameters:

❑ pSuspendCondition
A kSuspendCondition… value indicating whether this event is occurring due to the

page’s visibility changing, or sent to the cache.

❑ pTaskSuspended
A boolean indicating whether the Remote Task was/will actually be suspended. (It
may not, depending on the Remote Task’s $suspend… properties)

Remote Form Template file

The template .htm files have been updated, so it’s important that you update any
existing .htm files on web servers/included in wrapper apps etc accordingly.

Toast Messages
Toast messages are small notification type messages that that can be “popped up” in a
remote to alert the end user about something: the concept is derived from “toast

messages” on Android.

Toast messages are activated using a new client command “showtoast” which displays
a message to the user in a small popup which disappears after a timeout, either
5000ms or specified amount.

❑ Do $cinst.$clientcommand(“showtoast”,row-variable)
Where row-variable is row(text, [timeout, posX, posY, containerName, fixed,
originX, originY, speakMessage, assertive])

The toast message row-variable parameters are:

❑ text: The message text. The container’s size will scale with the amount of text. You
can use ‘\n’ to insert a new line.

❑ timeout: (Optional) The length of time (ms) the message will be shown for (5000
ms by default).

❑ posX: (Optional) The horizontal position of the toast message in pixels. Centered if
not specified. If containerName is specified, this position is relative to the control.

❑ posY: (Optional) The vertical position of the toast message in pixels. Positioned
near the bottom of the form if not specified. If containerName is specified, this

position is relative to the control.

❑ containerName: (Optional) The name of the control to position the toast message
relative to. Options are limited to paged pane and subform controls.

❑ fixed: (Optional) This determines whether or not the toast message will stay in

position when the container scrolls (true by default).

❑ originX: (Optional) The toast message’s origin that posX references. Possible
values are: kLeftJst (default), kRightJst and kCenterJst.

❑ originY: (Optional) The toast message’s origin that posY references. Possible

values are: kJstVertTop (default), kJstVertMiddle and kJstVertBottom.

❑ speakMessage: (Optional) If true, screen readers will announce the message. This
is an accessibility feature to convey information to visually impaired users.

❑ assertive: (Optional) If speakMessage is true, this instructs screen readers
whether or not to interrupt current speech.

 JavaScript Remote Forms

 123

The originX and originY parameters are used to set the point on the toast message that
posX and posY reference. For example, if originX is kRightJst and originY is
kJstVertBottom, the bottom right corner of the toast message will be at the position
specified by posX and posY.

Push Connections
The 'openpush' client command ($clientcommand) has a new (optional) parameter
which can be passed in its row parameter. The 'maxPollDelay' parameter (column)
allows you to override the default maximum delay (1000ms) between the client
receiving a '$pushdata()' from Omnis, and making a new connection to Omnis ready for
the next '$pushdata()' command. Passing a value of 0 (or less) will not change the

maximum delay.

If your application bounces back and forth between client & server in quick succession
(you call a server method from $pushed, which in turn calls $pushdata), you may find
that reducing this makes your application more responsive. There is a small overhead
to reducing this too low, however, so it's recommended to leave the default value
unless you have a need to change it.

Subform Sets
Scroll Position

In previous versions, there were some inconsistencies with where a subform in a
subform set was initially positioned relative to its container if the container had been
scrolled. Therefore, a flag, kSFSflagPosnScroll, has been added to control the
positioning of subforms.

When the kSFSflagPosnScroll is set the subform in a subform set (SFS) will open
relative to the current scroll position of its container. For example, on a long form which
is currently scrolled to the bottom of the page, with a subform opening at left position
100 and top position 100, it will open 100 pixels in from the top of what can currently be
seen in the viewport. Similar behavior would apply if it belongs to a paged pane that
has been scrolled.

When the flag is not set, it will be positioned absolutely to the defined position:
therefore, in a long form that has been scrolled to the bottom of the page, the subform
will be placed at the top of the page if its top position is set to 0.

However, when opening a modal subform in a subform set, if its position is set to
kSFSCenter, it will always be positioned relative to the current scroll position of the
form, as modal subforms always belong to the form, not a paged pane (since a modal
subform requires interaction and closing before any other action can be taken on the
form). If kSFSCenter and kSFSflagPosnScroll are both not used, then a subform will be
placed at its specified position, even if that is out of the current view of the user (which
is the behavior in previous versions).

Maximize Open flag

A new subform set flag has been added, kSFSflagOpenMax, which maximises
subforms within the subform set upon opening them. Sizes/positions should still be set

as the subform will return to these values if it is restored.

Scrollable flag

The kSFSflagScrollable flag has been added to allow subform sets to scroll, when
used with the ‘subformset_add' client command. The new flag only affects non-
responsive subforms, since responsive subform sets are scrollable by default.

Monitor Wizard
The Monitor remote task wizard can now produce a remote form for displaying the
connection results and activity (only a desktop window was available in previous
versions): you can choose either or both when you step through the wizard.

What’s New in Omnis Studio 10.1

124

In addition, an extra pane allows you to identify the remote task in your library that
needs to have the Monitor set for its superclass; this had to be set manually in previous
versions.

Serverless client methods
The default execution type for new methods added to a serverless client remote form is
now client-executed.

Error Text
In previous versions, white space assigned to $errortext removed the error div,
however this is no longer a problem.

Autocomplete
The default setting for the input element in the Edit control's 'autocomplete' attribute
was "off", but this cleared its contents when suspending to the browser's cache. This is

no longer set to "off" by default, but you can set this to a valid value.

JavaScript Components
Video Control
The JS Video control has been rewritten to remove its reliance on jQuery, and as a
consequence the control has some new properties and events. The $flowplayerurl and
$flowplayerline properties have been removed, as all supported browsers now support
HTML5 video. In converted libraries, the updated JS Video control will continue to work
as before.

The following new properties have been added:

❑ $startposition

The time (in seconds) at which the video should start when played.

❑ $currentposition
The current time (in seconds) of the current position in the video. Assign to this to
seek to a particular time.

❑ $duration
The duration of the current video (in seconds). Read-only (in a client-exec method).

❑ $poster
A URL to an image to display before the first frame of the video is ready. HTML5

video only ($youtube=kFalse)

❑ $playing
Whether the video is currently playing. Assign to this in order to play or pause the
video. Note that many mobile devices prevent the playing of videos if not in direct

response to a user action.

❑ $volume
The volume level of the video player (0-100). Assigning 0 will mute the player.

❑ $playbackrate
The video's playback speed, with 1.0 being default speed. Youtube will round down
to the closest supported rate of the particular video.

❑ $requestcaptions
If true, closed captions will be turned on (when available, attempting to use the
client's language) for Youtube videos. Note that even if disabled, captions may be
enabled through the video controls, or through the user’s account settings in
Youtube (if they are signed in).

Properties relating to the current video player ($currentposition, $duration, $volume)
will return -1 if queried before a video is ‘ready’ (see evVideoReady).

 JavaScript Components

 125

Events

The JS Video control has some new events.

❑ evVideoReady
Sent when the video is ready to be played, and can be interacted with.

❑ evVideoEnded
Sent when the video has finished playing (i.e. it has played to the end).

Both events receive a pVideoURL parameter, describing the currently playing video.
For HTML5 videos ($youtube = kFalse), this will be a URL to the video file. For
Youtube videos ($youtube = kTrue), this will be the Youtube video ID. These should
correspond to a value in the list assigned to the control’s $dataname.

Youtube Playlists

If the list assigned to a Youtube video control ($youtube = ktrue) has more than one
line, a playlist will be created, using the video IDs supplied in each line of the list. The
videos in the playlist will be played successively.

If $showcontrols is true, the playlist can be accessed via the video controls in the UI.
You could notationally skip to the next video by skipping to the end of the current video.
For example, using the client-executed method:
Calculate $cinst.$objs.youtubeVideo.$currentposition as

$cinst.$objs.youtubeVideo.$duration

Data Grid
Column Justification

The JavaScript Data Grid has the following new properties to allow you to justify
content in grid column headers.

❑ $headerjst
A kJSDataGridJst… constant that sets the alignment of the data grid header

❑ $columnheadersjst
A kJSDataGridJst… constant that sets the alignment of all the column headers;

overrides $columnheaderjst

❑ $columnheaderjst
A kJSDataGridJst… constant that sets the alignment of all the current column’s
header; $columnheadersjst must be set to kJSDataGridJstDefault

The JS Data Grid control now only escapes HTML in Character cells when formatting
the oontent for display. Therefore, when you edit a cell containing Character content,
you will see the same content as when not in edit mode.

Highlighting Cells

The properties $hilitefocusedcell and $cellhilitecolor have been added to the JS Data

Grid to allow you to highlight the cell that has the focus.

❑ $hilitefocusedcell
If true, the focused cell will be outlined in the color specified by $cellhilitecolor

❑ $cellhilitecolor
The color of the focused cell's outline, provided $hilitefocusedcell is kTrue

Initial Row Values

When a Data grid has $enterable & $extendable enabled, the user can add a new row
by entering data into the empty 'extendable' row at the bottom, and the remainder of
the columns in that row are given default values.

However, if you want to override these defaults, you can now implement a method
named $initextendrow on the Data Grid control. This method should return a row with
column values set to the appropriate default values you wish to use. The order and the
data type of the columns must match the order and types of the columns of the list
defining the Data Grid and specified in $dataname.

What’s New in Omnis Studio 10.1

126

Row Styles

The new $rowcsscol property allows you to specify CSS styles for a row in a data grid.
The $rowcsscol property specifies the column number in the $dataname list for
specifying custom CSS class names to apply to individual rows. Multiple class names
can be assigned with a space separated list.

The CSS rules for classes can be added to user.css: it may be necessary to use

!important to override existing styles. For example, in user.css:
.omnis-datagrid .highlight {

 background: red !important;

 color: white !important;

}

Entering Dates Manually

The properties $editdatetext and $columnallownulldateinput have been added to the
Data Grid to allow end users to enter a date manually via the keyboard rather than
having to use the date picker.

When set to true, $editdatetext (and $columneditdatetext when $userdefined=kTrue),
allows keyboard entry of a date/time. If a date that cannot be parsed is entered, it will
revert to the previously stored date, unless $columnallownulldateinput=kTrue, in which
case the field data will become null.

Note this has no effect on the date picker popup control, so if you don’t want to use the
picker you need to apply the following css rule to hide the picker:
.datetimepopup-button {

 visibility: hidden;

}

Toolbar Control
Selected Line Color

The behavior for the selected line in the side menu of the Toolbar control has been
improved with the addition of the property $selectedlinecolor.

❑ $selectedlinecolor

The color used for the background of the selected line in the side menu.

Items in the side menu can now have a 'selected' state as well as a 'focused' state.
Selecting a line in the side menu now sets the current line in the list. The selected line
will remain highlighted until another line is selected. When the side menu is opened,

the selected line will get the focus.

Note that icons are not displayed on overflow items.

Side menu & Hover Text Color

Several text color properties have been added to the JavaScript Toolbar to allow you to
set the text color and hover color of items in the side menu and overflow menu. The

new properties are:

❑ $toolbarhovertextcolor
The text color of toolbar items when hovered

❑ $sidemenutextcolor

The text color of side menu items

❑ $sidemenuhovertextcolor
The text color of side menu items when hovered

❑ $overflowtextcolor

The text color of overflow menu items

❑ $overflowhovertextcolor
The text color of overflow menu items when hovered

 JavaScript Components

 127

The new properties have the value kDefaultColor by default so that any side menu and
overflow menu items in a toolbar control in an existing library should have the same
colors as before.

Disabling Items

The $itemenabled property has been added to JS Toolbar items to allow you to disable
specific items. When $itemenabled is set to kFalse for an item it is greyed and cannot
be selected with the pointer or keyboard. This property applies to items whether they
are on the toolbar itself or the overflow menu.

Date Picker
The appearance and layout of the Date Picker in date/time and calendar mode has
been improved. You can specify a custom format using the new property
$datestylecustom and you can allow end users to select a date range using
$rangeselection.

Custom Date Style

A new property, $datestylecustom, has been added to the Date Picker control, which is
used in conjunction with setting $datestyle to the new kJSDatePickerStyleCustom
setting. You can enter a string of characters to represent the columns required as per
the Omnis date/time format strings, for example, "mdy" to specify Month, Day, Year
columns in that order.

In addition, you can specify a grouped column by enclosing the date characters in
parenthesis, for example, "(wdm)" will specify a single coumn containing Weekday,
Day, Month. Note: this column will always alter the day by one by increasing or
decreasing it, so it only makes sense to use this type of column if it includes a day or
weekday. Time elements entered into a grouped column will be ignored. Repeated
characters are ignored and only one group can be used (further groups are ignored).
Groups take precedence over individual columns, therefore "d(wdm)y" will be treated
as "(wdm)y".

Date pickers (other than custom) now pick up the locale of the client and display the
picker in their standard format. For example, the Date Picker will display Day, Month,
Year in the UK, and Month, Day, Year in the USA (assuming their location settings are
set correctly).

These changes have also been implemented in the Data Grid. The data grid uses the
appropriate Date Picker according to the constant specified in $dateformat or
$columndateformat. If this is set to kJSFormatCustom, then $dateformatcustom or
$customdateformatcustom is used as above. If set to kJSFormatNone, then it will
attempt to use the data subtype applied to the dataname of the column to determine

which picker to use.

evDateClick event

A new event evDateClick has been added to the Date Picker, which is generated when
a date is clicked, regardless of whether or not the date has changed.

Selecting a Date Range

Two new properties have been added to the calendar type Date Picker $rangeselection
and $rangeenddataname to allow the end user to select a date range, that is, a start
date and an end date. The first being a boolean to put the calendar into range selection
mode. When true, the end user can select a range of dates by selecting one date after
another. The $rangeenddataname property is the name of an instance variable to store
the end of the data range and should be of type Date. The variable in $dataname will

always hold the start date in range selection mode.

A boolean parameter, pInRangeSelection, has been added to evDateClick which only
applies to calendar type Date Pickers. This will be passed as true when the end user
has selected the first date, and false once they have selected the second. If

What’s New in Omnis Studio 10.1

128

$rangeselection is kFalse, this parameter is not passed, and therefore will return NULL

if tested on evDateClick.

A new event, evDateRangeChange, has been added, which fires every time a date
range selection has been completed (and $rangeselection is kTrue). This passes two
parameters: pStartDate and pEndDate. This means you can obtain a date range
without using instance variables if you just need to react to the date range selected.
evDateChange does not fire when $rangeselection is kTrue.

As part of these changes, $currdaycolor now applies to inside the current day indicator
ring instead of applying to the whole cell. This ensures the type of cell is still
understood by the end user. E.g. When $todayscolor is different to $daycolor, the end
user can still see that it is today, even when they have selected it as the current day.

Localization

The following strings have been added to the JS Localization string table to allow you
to localize strings for the Date Picker, and some generic labels for other controls. Note
that some of the strings are now arrays of strings to simplify localization (e.g. for
months, days of the week, etc).

Date picker specific strings

The following are specific to the Date Picker control:
"ctrl_date_increase": "Increase"

"ctrl_date_decrease": "Decrease,

"ctrl_date_time_button": "Open time picker"

"ctrl_date_calendar_button": "Open date picker"

"ctrl_date_header": ["Select a Month", "Select a Year", "Select a Decade",

"Select a Time"]

Generic strings

The following are more generic strings for months of the year that may be used across

different controls:
"month_names": ["January", "February", "March", "April", "May", "June",

"July", "August",

"September", "October", "November", "December"]

"month_names_short": ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug",

"Sep", "Oct",

"Nov", "Dec"]

"day_names": ["Sunday", "Monday", "Tuesday", "Wednesday", "Thursday",

"Friday",

"Saturday"]

"day_names_short": ["Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"]

"date_units": ["Day", "Month", "Year", "Decade"]

"time_units": ["Hour", "Minute", "Second", "Millisecond"]

The following example applies Spanish text to the Calendar:
<script type="text/javascript">

 jOmnisStrings.es = {

 "month_names": ["Enero", "Febrero", "Marzo", "Abril", "Mayo", "Junio",

"Julio", "Agosto", "Septiembre", "Octubre", "Noviembre", "Diciembre"],

 "month_names_short": ["enero", "feb.", "marzo", "abr.", "mayo", "jun.",

"jul.", "agosto", "sept.", "oct.", "nov.", "dic."],

 "day_names": ["Domingo", "Lunes", "Martes", "Miércoles", "Jueves",

"Viernes", "Sábado"],

 "day_names_short": ["DOM", "LUN", "MAR", "MIÉ", "JUE", "VIE", "SÁB"],

 "date_units": ["Día", "Mes", "Año", "Década"],

 "time_units": ["Horas", "Minutos", "Segundos"],

 "ctrl_date_header": ["Selecciona un mes", "Seleccione un año", "Seleccione

un década", "Seleccione una hora"]

};

 JavaScript Components

 129

</script>

See the Localization chapter in the Creaing Web & Mobile Apps manual for more

information about setting the strings in the jOmnisStrings object.

Tree List
Line Border

The JS Tree List has two new properties, $lineborder and $linebordercolor, that allow
you to add a horizontal line between nodes. When $lineborder is set to true, a row
border is added between each node. $linebordercolor specifies the color of the line; it

uses the value of $bordercolor when set to kColorDefault.

In addition, when selecting a node in a Tree List the whole line is now selected. This
makes it more consistent with the appearance of the thick client, and also the Windows
and macOS native behavior.

Even Row Color

A new property, $evenrowcolor, has been added to the Tree List and specifies the
color to be used for every even row in the list of nodes. The kColorDefault setting
means use the same color as odd numbered rows ($backcolor). This can be used to
produce a similar effect to the macOS finder, with alternating colors on odd and even

rows.

Complex Grid
Drop support has been added to the JS Complex Grid which allows the end user to
drag data from a remote form field and drop it onto a cell in a complex grid. To allow
drop support, the events evCanDrop and evDrop, and the $dropmode property have

been added to the Complex Grid.

The pDropRow event parameter is available for evCanDrop, evWillDrop and evDrop
events, and reports the row of the complex grid on which the drop is to occur (zero if
the control does not belong to a complex grid).

It is possible to drop data onto a single control in the grid (a cell) in any row in the grid,
as long as it has its $dropmode enabled. If not, the complex grid itself will receive the
drop: this differs from the thick client complex grid in which only fields on the current
row can receive a drop.

List Control
Double-click Events

A double-click event is now sent to a JS List Control if the Enter or Space key is
pressed while the focus is in the List and if the evDoubleClick event is enabled on the
list. Otherwise, if the control has an evClick event enabled, Enter/Space sends an
evClick. If the control does not have the evClick or evDoubleClick enabled, then Enter
triggers the okkeyobject (if there is one), as long as the state of the list has not
changed, i.e. the current line has not changed, and no checkbox has been toggled.

List Pager

The $pagerpage property has been added to all JavaScript controls that support the
List pager to allow you to set the page to be displayed; $pagesize must be greater than
zero for this property (and the List pager) to be enabled. The List pager is supported in

the standard JS List, Native list, Data grid, and Complex grid.

What’s New in Omnis Studio 10.1

130

Edit Controls
Accented Characters (macOS)

The mechanism on macOS for entering accented characters using the Option key now
works for all built-in Edit fields. Note there was a fault stopping this working when
dictation was enabled but this is now fixed.

For example, on a British keyboard typing Option-N provides the dead key for the ~
accent and will display that as the selected character. The next key stroke determines

the replacement character to be accented, so typing n will replace the ~ with ñ.

Auto Correction (macOS)

You should note that Auto correction, Auto capitalization and Auto completion (the
properties $autocorrect, $autocapitalize & $autocomplete) only work in Omnis when
they are enabled on the client Mac computer. Note also that $autocapitalize only

applies when using a virtual keyboard on a device.

Selecting Dates

A new constant, kJSInputTypeDate, has been added to the $inputtype property of the
Edit Control to allow the end user to select a date using the Date Picker. When
$inputtype is set to kJSInputTypeDate (and $inputtypetouchonly is set to false), a
date/time picker will be used to pick a date value for the Edit control. $dataname must
be set when using kJSInputTypeDate and other input types such as
kJSInputTypeNumber.

The format of the date picker should be calculated from $dateformat
($dateformatcustom if $dateformat == kJSFormatCustom). If $dateformat is
kJSFormatNone, then the control attempts to fall back to the dataname subtype.

Paged Panes
Paged panes now scroll during design mode when you drag and drop content onto the
page control. The drag and drop scroll rectangle has changed and now includes the
edge of the client when scrolling with the mouse at the right or bottom edge of the
container.

Switch Control
The JS Switch Control has two new properties, $justifyhoriz and $justifyvert, to justify
its contents horizontally or vertically. $justifyhoriz can be set to kLeftJst, kRightJst, or

kCenterJst, while $justifyvert can be kJstVertTop, kJstVertBottom, or kJstVertMiddle.

TransButton
The JS TransButton will now center its content vertically when $vertical is true: it
previously anchored text/icon to top/bottom of the control when $vertical was true.

$align now also affects the placement of the icon when $vertical is true.

Disabled Appearance Property
A new property, $defaultdisabledappearance, has been added to all JavaScript
controls which have the $enabled property. The property defaults to true, which, when
the control has $enabled = kFalse, applies the 'omnis-notenabled' css class to the
client element. If $defaultdisabledappearance = kFalse, this class is not applied, which

is what sets the text colour to grey when disabled.

The controls which have this new property are: Bar Chart, Combo Box, Data Grid, Date
Picker, Edit, List, Map, Pie Chart, Rich Text, and Tree list.

Accessibility Properties
It is possible to use a space separated list of controls for the $arialabelledby and
$ariadescribedby properties to assign multiple controls as labels for the component.

 Commands

 131

Component Store
The bitmap for an object dragged from the Component Store now has a rectangle with

the same dimensions as the control that it will drop.

Field List
The Field List (which lists controls on a remote form, as well as windows and reports)
now scrolls to the first selected field to display it, expanding tree nodes if necessary.

Commands
Line: command
There is a new command, Line:, which is like the Text: command, except that it just

adds a single line of text to the text block.

Syntax

Line: line-text

Description

Adds a line of text to the text buffer for the current method stack. The Line: command
supports leading and trailing spaces and can contain square bracket notation, that is,
you can include or add the contents of a variable to the text buffer. You build up the
text block using the Begin text block and any combination of one or more Text: or Line:
commands. The Carriage return and Linefeed options of the Begin text block command
specify the line delimiter added to the text buffer after the text added by the Line:
command. When you have placed one Line: command and you press Ctrl/Cmnd-N to
create a new method line, a new Line: command is added. You should end a block of
text with the End text block command, and you can return the contents of the text
buffer using the Get text block command.

There is a new external editor (similar to the JavaScript: and Sta: editors) for adding
consecutive sequences of Line: commands. You can open this in the usual way, via the
code editor parameter helper. Note that Line: is available in both normal and client-
executed methods.

Begin text block command
The Begin text block command has two new options, Carriage return and Linefeed.
These specify the line delimiter added after each line of text added by the Line:
command. If you omit both of these options, Omnis uses the platform specific newline
character.

Window Classes & Components
OBrowser
CEF support on macOS

The macOS version of OBrowser (window class component) now uses the Chromium
Embedded Framework (CEF), which is already used in the Windows version of the
component.

With this enhancement, the macOS version of OBrowser now supports the standard
OBrowser CEF configuration settings using the cefSwitches configuration item within
the config.json (same as the Windows version).

The previous version of OBrowser on macOS (which used the Cocoa WebView) had
the property $disablepluginsmacos, but this is now obsolete and will not show in the
Property Manager. The notation for this property is still supported in your code but it

has no effect.

What’s New in Omnis Studio 10.1

132

Cookies

The Chromium Embedded Framework (CEF) used by OBrowser stores cookies in a
SQLite database called Cookies. This is located in the user App Data folder, such as
on Windows:
C:\Users\<username>\AppData\Local\Omnis Software\OS10.x\chromiumembedded\cache

Or in the /Application Support folder at /chromiumembedded/cache on macOS. This
database can be managed using a SQLite DAM session.

Object Animation
There is a new library property, $animateui, that controls whether or not certain window
class controls are animated; those same controls also have the $animateui property.
For this release, the Tree List has the new property, and the Tab Strip has some new
types to highlight and animate the tabs when they are selected (animations will be

applied to more controls in future releases). The property is defined as:

❑ $animateui
If the library property $animateui is true, all objects that support $animateui will
animate aspects of their interface. Therefore, the object property only applies when

the library property is false.

If the $animateui library property is false (shown on the Appearance tab in the Property
Manager), the setting of the $animateui property for the individual object is used.
Therefore, if you only want some of the controls in your library to animate, set the
$animateui library property to false, and override at the object level by setting
$animateui for the object to kTrue.

Tree List

When $animateui is enabled for a Tree List, the contents of the list will display by
dropping down gradually as you open the control. If $animateui is disabled the tree list

content drops down instantly, as in previous versions.

Tab Strip

The $squaremode property in the Tab Strip has been enhanced and now includes
several different settings to provide new appearance and animation options (the
$animateui library property must be enabled to allow the animation). The $squaremode
property is set to kTabStripOriginal by default which means it has the same
appearance and behavior as in previous versions. The other options include:

❑ kTabStripSquare
the tabs have square corners and fill the entire control area; there is no animation

when the tab changes

❑ kTabStripAnimSquare
the tabs have square corners and the tab change is animated

❑ kTabStripAnimLine

the current tab is indicated with a line and the tab change is animated

❑ kTabStripAnimDot
the current tab is indicated with a dot and the tab change is animated

❑ kTabStripAnimRndSquare

the tabs have rounded square corners and the tab change is animated

The $animateui library property must be enabled to use the Tab Strip animations; if the
preference is set to false, you can still use the square, line and dot options but they will
not be animated.

IDE Animation

As a consequence of adding animation, some controls in the Omnis Studio IDE are
animated. For example, the main tree list in the Studio Browser, and the Method
names tree list in the Method Editor is animated when you open the editor or redraw
the list.

 Window Classes & Components

 133

There is a new option "animateIDEcontrols" in the “ide” section of config.json that
enables animation in the IDE (this does not affect the setting of the library or object
property in your own libraries, just the IDE): it is set to True by default. Set this to false
if you don’t want any objects in the IDE to be animated.

Animation Curves

The $beginanimations() method now has an extra parameter allowing you to specify
one of a number of new animation “easing” curves. The definition for
$beginanimations() is now:

❑ $beginanimations(iDuration[,iCurve=kAnimationCurveEaseInOut])
after calling this, assignments to some properties are animated by
$commitanimations() for iDuration (in milliseconds), using iCurve as the animation
curve (kAnimationCurveEaseInOut is the default)

Where iCurve can be one of the following animation curves:

❑ kAnimationCurveEaseIn

The animation begins slowly and then speeds up as it progresses.

❑ kAnimationCurveEaseInBack
The animation is similar to kAnimationCurveEaseIn but first moves in the opposite
direction before easing begins.

❑ kAnimationCurveEaseInOut
The animation begins slowly, accelerates through the middle of its duration, and
then slows again before completing.

❑ kAnimationCurveEaseOut

The animation begins quickly and then slows down as it progresses.

❑ kAnimationCurveEaseOutBack
The animation is similar to kAnimationCurveEaseOut but moves beyond the final
point before easing back to the final location.

❑ kAnimationCurveEaseOutBounce
The animation starts slowly and then bounces on its final location.

❑ kAnimationCurveEaseOutElastic
The animation starts fast and springs to a stop around its final location.

❑ kAnimationCurveLinear
The animation occurs evenly over its duration.

Switch Control
There is a new Switch Control that has the appearance of an “iOS style” switch: when
the switch is turned on or off (clicked) the round button slides across and the
background changes color. The on/off state is assigned to the $switchon property. The
following shows the off (left) and on state:

The Switch Control is an External Component and will appear under the External
Components tab in the Component Store, but it is not loaded by default. To load the
Switch control, right-click on the Component Store, select External Components, open
the External Components group, scroll and select the ‘Switch Library’ in the list, and
finally select the Pre-Load status (on opening Omnis or the current library). The Switch
control will now be visible in the Component Store and can be dragged onto your
window: note you will need to resize the control to make the background part visible.

The Switch Control has the following properties (shown on the Custom tab in the

Property Manager):

❑ $switchbutton
the color of the round button part of the switch; the default color is white

What’s New in Omnis Studio 10.1

134

❑ $switchcolor
the background color of the switch when switched on; the default color is dark
green

❑ $switchon
true if the switch is on; setting this in design mode sets the default state when

opening the window

❑ $transparencywhenoff
the amount of transparency when the switch is turned off, an alpha value from 0 to
255; the default value is 50

You can test the value of $switchon in the $event method for the control to branch
depending on its true/false value.

Multibutton Control
There is a new Multibutton control that provides a round, animated popout button that
opens to show a number of additional options, each represented by an icon. The button
reports the evButtonClicked event with the pButtonid parameter being the selected
button. The following image shows the closed state (left) and open state of a
multibutton, in this case opening to the right:

The Multibutton Control is an External Component and will appear under the External
Components tab in the Component Store, but it is not loaded by default. To load the
Multibutton control, right-click on the Component Store, select External Components,
open the External Components group, scroll and select the ‘Multibutton Library’ in the
list, and finally select the Pre-Load status (on opening Omnis or the current library).
The Multibutton control will now be visible in the Component Store and can be dragged
onto your window.

The Multibutton Control has the following properties (shown on the Custom tab in the
Property Manager):

❑ $buttoncolor
The background color of the control

❑ $buttonopen
kTrue if the control is open

❑ $expanddirection
the direction the control expands, a constant: kMBexpandRight, kMBexpandLeft, or

kMBexpandCenter

❑ $iconstr
comma separated list of icon ids that are displayed when the control is opened, the
number of icons determines the number of options; you can provide icons with a

transparent background, so the background color is seen

❑ $openicon
the ID of the icon shown to ‘open’ the control; this is shown in the closed state and
can be a different icon as those displayed in the popped out list of buttons

❑ $closeicon
the ID of the icon shown to ‘close’ the control; this replaces the icon specified in
$openicon

The multibuton reports the evButtonClicked so you can use this in the $event method
for the control and test the value of pButtonID which is the id of the selected button
starting at 1 for the first button in the popped out list of buttons.

 Window Classes & Components

 135

Window Messages
The $showmessage() method has been added to window instances, which you can
use as an alternative to the OK message command; this is similar to the
$showmessage() method which is available in remote form and remote task instances.
The new method is also available for menu, toolbar, report, object, and table instances.
The method has the following definition:

❑ $showmessage(cMessage[,cTitle,iOptions=kMsgOK])
displays a message using the specified cMessage, cTitle and iOptions (a sum of
kMsg... constants). Returns true for OK or Yes, false for No or cancel. You can use
msgcancelled() to check for cancel.

The supported constant values are:

kMsgOK Display an OK message (the default)

kMsgYesNo Display a Yes/No message

kMsgNoYes Display a No/Yes message

kMsgCancelButton Add a cancel button to the message

kMsgIcon Display an operating system specific icon
with the message

kMsgSoundBell Sound the bell when the message is
displayed

If you mix kMsgYesNo, kMsgNoYes and kMsgOK, kMsgYesNo has precedence over
kMsgNoYes. kMsgNoYes has precedence over kMsgOK.

Window Design Task
When testing a window class (Ctrl/Cmnd+T or the Open window hyperlink of the
browser, or the browser context menu for a window class) Omnis now switches to an

instance of the design task, or the startup task if there is no design task.

There is a new item in the config.json, tryDesignTaskWhenTestingWindow in the “ide”
section, to control the new behavior. When true (the default), Omnis looks at the design
task name, and if it is the same as the startup task name, switches to the startup task,
as before. If however, the design task name is different, Omnis switches to the first
instance it can find of that task, but if there is none, it switches to the startup task as
before.

When tryDesignTaskWhenTestingWindow is false, the behavior is the same as for
previous versions: when testing a window, Omnis switches to the startup task of the
library containing the window.

List box, Headed List and Check box lists
The $linebackgroundcol property has been added to the List box, Headed List and
Check box list windows class controls.

The $linebackgroundcol property specifies the column number in the data list for the
control ($dataname) that contains color values that override the default background
color of each line; the value zero or kColorDefault in this column means the normal
background color for the line is used.

Font Scaling for Fields
You can now increase or decrease the font size of thick client Multi-line Entry field,
String grid and Data grid using the key press Ctrl + or Ctrl -.

The $disablefontsizekeys property has been added to control font scaling for these
controls, together with the standard List, Checkbox list, Headed list and Tree list which

What’s New in Omnis Studio 10.1

136

already respond to the Ctrl +/- key press to scale the font. The default value of
$disablefontsizekeys is kFalse, which means the control will respond to the Ctrl +/- key
press to adjust its font size; set the property to kTrue to disable font scaling.

Headed List
You can now use the style() function to style the text in Headed List box column names
specified in $columnnames. Note the styled text in $columnnames has to be assigned

in $columnnames at runtime.

Round Button
The Round button control, introduced in Studio 10.0, uses transparency, so requires a
minimum of Windows 8 or higher.

Field Styles
The style for a window class object is stored in its $fieldstyle appearance property.
When adding a property in the custom style dialog (opened from a context menu in the
Property Manager) the current style (if any) is selected in the dialog by default.

Background Object Names
Windows class Background objects, such as Label and Text objects, now have the
$name property which defaults to the ident of the object, that is, a number which is
generated automatically (e.g. 1016). You can assign your own name which will help
you identify the object more easily: you cannot set $name to a number, but the name
can include numeric characters. Setting the name to empty resets it to its default
number ident.

Border Effects for Shape, Text and Labels
Shape fields, as well as Label and Text background objects now support the $effect,
$bordercolor and $linestyle properties to allow you to apply border style effects.

Functions
delchars()
There is a new function delchars() which can delete a substring of a specified length at
the specified position.

delchars(string,position[,length=1])
Returns the string generated by deleting the substring at the specified 1-based position
and length from string. If length extends past the end of the string, the function deletes
to the end. For example:
 Calculate lString as delchars('String',2,2)

 # lString is now ‘Sing’

sys(123)
There is a new sys() function, sys(123), that returns the build number of the Omnis

executable. The Omnis About box shows the same build number in the version string.

sys(192)
sys(192) now contains the line number of the executing line, and the executing linetext,
rather than the next linetext to execute.

A Boolean item has been added to the config.json file, “sys192excludesIDEmethods" in
the "defaults" section, to specify whether or not to include IDE method calls in the list
returned from sys(192) (the default is true so IDE methods are excluded). When true,

 Omnis Environment

 137

this will exclude an IDE method if the library containing the method is marked as

always private.

sys(292)
There is a new sys() function, sys(292), that returns an empty or single line list
containing the same columns as sys(192) where the line represents the calling method.

systemversion()
The systemversion() function has been added to replace all the "is...()" functions (e.g.

iswindows10()) for determining the current operating system version.

Returns a row of version information about the current operating system, with columns
platform, major, minor, build, and server.

The platform parameter is the platform code; major, minor, and build identify the

system version (not for Linux); server is true for Window server systems.

pictformat()
pictformat() is now available in the Linux headless server.

isclear()
The isclear() function now returns true for empty and false Boolean values.

FileOps.$splitpathname
The last three parameters (directory-name, file-name, file-extension) of

FileOps.$splitpathname are now optional.

Omnis Environment
Trace Log
The Trace Log has been added to the Studio browser. There is a new node in the
Studio browser to open an alternative view of the Trace Log, which behaves in the
same way as the existing trace log (except there is no max lines setting). The Trace

Log node shows the current number of lines in the log.

There is a new option in the HUB options to specify whether or not the Trace Log node
is displayed in the Studio Browser: the default is on.

What’s New in Omnis Studio 10.1

138

The new Trace Log view in the Studio Browser provides all of the options currently
accessible via the trace log window (either via hyperlinks, context menu or both), with
the exception of the maximum number of lines setting (which now defaults to 100000).
Also, double clicking on the trace log view behaves just like the trace log window.

You can use the search box at the top of the Studio Browser to search the contents of

the trace log.

The current trace log window is still available, in the Open trace log command, and also
for the runtime.

Server Socket Bind Failures

There is a new option to disable Trace Log opening in runtime when a server socket
bind fails. In the developer version, the Trace Log window now never opens when this
occurs as you can view the trace log in the browser.

The new option is a Boolean property in the ‘server’ section of config.json:
"runtimeOpensTraceLogOnSocketBindError"; the default value is true, so set this to

false to suppress the trace log.

Update Manifest Files (macOS)
On macOS if an Omnis deployment is replacing an existing installation using a simple
drag and drop approach, that is, from a disk image to the Applications folder, files
which already exist in the current user's Application Support folder will not be updated

from the files in the firstruninstall folder of the new disk image.

If there are files which need to be patched, a mechanism needs to be found to remove
the existing files from the user data location, e.g. run an update script. Therefore,
Omnis now provides the use of Update Manifest Files to allow a deployment to specify
the files in an existing set of user data which need to be removed so they can be
replaced by newer files from the firstruninstall folder.

When Omnis starts it will read an integer deployment version number from a file called
“version” in the Omnis application's macOS folder:
/Applications/Omnis\ Studio\ 10.1.app/Contents/MacOS/version

If this file does not exist then the deployment version number will be set to the Omnis
internal build number (as returned by sys(123)).

Omnis will read the version of the user data from a hidden file (.version) in the root of
the user's application data folder for the Omnis application.
/Users/<username>/Library/Application Support/Omnis/Omnis Studio 10.1/.version

If this file does not exist, the user data version is set to zero. If the user data version is
lower than the deployment version, Omnis will check for updates that need to be
applied.

The updates are specified in a set of files which should be placed in a folder called
“manifest” within the Omnis application's macOS folder. Each file should be named for
the version which specifies the changes. For example, if the new deployment is version
23071 there should be a file named 23071.
/Applications/Omnis\ Studio\ 10.1.app/Contents/MacOS/manifest/23071

The manifest file should contain the paths of each file or folder which needs to be
updated for that version. Each path should be separated by a new line.

Therefore, if file 23071 contains:
studio/v40.lbs

startup/vcs.lbs

This will indicate that the Studio Browser and VCS are to be updated (removed from
the user data) for version 23071.

There can be a manifest file for interim versions if updating an older version of Omnis.
Therefore, if the user version is 23069, the deployment version is 23071 and the
manifest folder contains 23070 and 23071 then both files will be used for updating.

 Libraries and Classes

 139

If updates are applied, the hidden user data version is updated to the deployment

version.

Note that the Omnis application deployment tree (code-side) still needs to be re-signed
(and notarised) for each version of a deployment.

It is not recommended that individual files are updated in an existing signed tree (as

this will invalidate the signature).

Query builder
You can now set the default Join type for queries in the Query Builder. The 'Join Type'
selection has been added to the Joins window, which can be opened by right-clicking
on a Join and selecting ‘Joins’ in the query window.

Appearance Property
A new color ‘colorheadertextwin’ has been added to ‘header’ section of the
‘appearance.json’ file to set the default text color for Headed list buttons on the
Windows platform.

Libraries and Classes
Library Conversion
Conversion Messages

You can disable the working messages such as "Converting class..." during library
conversion by setting a new option "showLibraryConversionWorkingMessage" located
in the "defaults" section of the config.json file. The new option defaults to true, but you
can set it to false to disable the conversion working messages.

Conversion Log Delimter

The log file created on library conversion (and written to logs/conversion folder) now
uses tab-delimited format, with exported text in quotes (the default). You can change
both of these options using new configuration items in the config.json file, in the log
section:
 "conversionLogDelimiter": "\t",

 "encloseConversionLogTextInQuotes": true

If conversionLogDelimiter is empty, Omnis uses the default log delimiter, a semicolon

(;).

Error Processing
There has been a small update to $clib.$prefs.$errorprocessing logging. The log
messages have been reduced to a single line identifying the error, and the call stack
lines.

Default Library name
The characters and format of the string allowed in the $defaultname property (to
override the auto-generated internal library name) for a library are now more limited.
When assigning the library $defaultname, you cannot include leading or trailing spaces,
and the name cannot start with a digit or contain the following characters: . $ () [or].

$container
The $container notation has been extended to object and table instances.

You can use $cinst.$container in an object or table instance, to reference the instance
that contains the object list or row variable. This may return #NULL if there is no
associated instance, such as, when the variable is a class variable.

What’s New in Omnis Studio 10.1

140

JavaScript Worker
List/Row Parameter
In the JavaScript worker, the list/row parameter passed to $methodreturn now has two
columns added by the worker: __module and __method. If the parameter is a list, then
__module and __method are only populated for the first line of the list.

The list/row parameter of JavaScript worker $callmethod method is now optional. An
empty parameter is passed to the JavaScript method as null.

Non-JSON content
The content column for non-JSON content returned from a JavaScript worker method
is now of type character when the content type is text/.

Node.JS Error Reporting
Reporting of node.js errors has been improved. If an unhandled exception occurs
causing node.js to exit, Omnis now adds the stack traceback of the exception to the

errorInfo column of the row passed to $workererror.

Remote Debugger
Locked Classes
You can now debug methods in a class when it is locked using the remote debugger if
the new class property $canremotedebugwhenlocked is set to true. Locked classes for
which this property is kFalse do not appear in the remote debug client list of classes for

the library.

Exclude Folders
A new option has been added to exclude folders from Remote Debugger class list. The
Remote Debug Server configuration has a new option (Exclude folders) which controls
whether or not folders are returned by the server to the client, and therefore displayed
in the browser. The remote debug server dialog has been updated to allow this option
to be edited.

Omnis Datafile Migration
SQLite logon configuration file
You can now specify a logon configuration file when connecting to a SQLite database
file (this was previously only available for PostgreSQL).

The logon configuration file for SQLite should have the .DFQ file extension, and can be
specified as the hostname when opening the database. The DFQ file may contain one
or more session property assignments, e.g. quotedidentifer=1. If 'hostname' is not
present the library uses the pathname of the .DFQ file and substitutes .DB.

PostgreSQL logon prompt
When emulating DML using PostgreSQL there is a prompt if either hostname,
username, or password is missing from the logon config file. A "prompt" item may also
be specified in the config file to override the default prompt message.

 List Programming

 141

List Programming
List & Row Variable Columns
The maximum number of columns for list and row variables is now 32000, not 400 as in

previous versions.

Object Classes
Object Variable Count
The $usage property has been added to object variables to report the current number
of object variables that are sharing the underlying external component object. A NULL
value means the object is neither an external component object, nor is it subclassed

from an external component object.

Note that copies of the object such as $statementobject and $sessionobject contribute
to the count.

Object instances
Object instances created via sub-type now belong to the current task at the point of

their creation; this provides consistency with object instances created via $new.

File Classes
Defining a List from a File class
You can now define a list based on a file class in another library using the notation
list.$define(): note that the name must be passed as a string e.g. "lib.filename".

You can use the switch /s, e.g. "lib.filename/s", where s means skip columns with

empty names in the file class.

Web Services
Unknown Query String Parameters
RESTful methods can now allow unknown query string parameters.

The RESTful panel for a RESTful method in the Method Editor has a new checkbox
option "Allow unknown query string parameters" (the default is unchecked). When
checked, it means the RESTful server will accept requests that contain query string
parameters that are not specified in the method parameters. The remote task instance
can access these unknown parameters using a new property
$unknownquerystringparams (e.g. using the notation

$cinst.$unknownquerystringparams).

The new properties are:

❑ $allowunknownquerystringparams
If true, the RESTful method allows query string parameters that are not present in
the method parameters. You access these unknown parameters using the property
$unknownquerystringparams of the remote task instance.

❑ $unknownquerystringparams
If unknown query string parameters are allowed, then this property is a row with a
character column for each unknown parameter (the column name is the parameter
name in lower case and the column value is the parameter value).
There is also new notation of a method item, to reflect the new checkbox option.

What’s New in Omnis Studio 10.1

142

The Library JSON import/export option, and method printing has also been updated to

handle these new properties.

RESTful Output Type
RESTful methods can now return an array of JSON objects by suffixing their return
type schema name with []. To do this, you should use schema[] as the RESTful output
type, or the return type for one of the HTTP status codes, e.g. mySchema[]. The

RESTful method must then return a list defined from the schema rather than a row.

Object array output type

In addition, the $sendlistsasobjectarray property has been added to RESTful HTTP
methods. When set to true, the JSON generated by Omnis for a returned row or list
that contains lists, contains arrays of objects rather than arrays of arrays (in this case
the lists must only contain columns with simple types). There is one exception to this
rule. If the list to be converted to JSON has a single column named "<array>", Omnis
outputs the list as an array.

There is a new checkbox on the RESTful panel for the HTTP method in the method

editor, that allows you to select this option.

Note that this option applies to both rows returned by the method, and lists returned by
the method when the return type is schema[]. In the latter case, the top-level array
returned is always an array of objects, therefore you should note that the new option

applies to lists contained in the returned list.

Report Programming
Hyperlinks in PDF Reports
Hyperlinks are now supported in PDF and Page Preview report destinations.

To add a hyperlink to a report, use the HTML link external component (text, picture and
icon are all supported), and set the $address property to the target of the link, for

example:
https://omnis.net

mailto:bob.smith@omnis.net

or for Page Preview reports only, and ignored for PDF reports:
omnis:p1,p2,p3,p4

where the data after omnis: is a comma separated list of parameter values, which can
be integer or character, and must not contain ".

In the latter case, when the user clicks the omnis: link, Omnis looks for a method called
$previewurlclicked. Firstly, if the report has been sent to a window field, Omnis looks
for the method in the window instance containing the screen report field, otherwise if
the first test fails, Omnis looks for the method in the task that printed the report. If
Omnis finds the method, it calls $previewurlclicked passing it the following parameters:

1. An item reference to the report instance.

2. The ident of the report object.

3. A row created by adding a column for each comma delimited item in the data
after omnis: in the link.

You can create a method called $previewurlclicked in either the window or task, as
above, and react to the parameters passed.

Report PDF Files & Fonts
In previous versions there was an issue printing report files to the Omnis PDF device
that contain the New York legacy Mac font.

 Localization

 143

To overcome this issue, you can now map unknown macOS fonts in reports sent to
PDF to alternative fonts. There is a new item called "unknownMacOSFonts" that you
can add to the "pdf" section of config.json to specify the font mapping. For example:
 "pdf": {

 "unknownMacOSFonts": {

 "New York": "Times New Roman",

 "default": "Lucida Grande"

 }

 },

The members of the unknownMacOSFonts object are the names of the unknown fonts
to be mapped, and the name of the replacement font. A “default” member can be

included to map all other fonts not listed in unknownMacOSFonts to the specified font.

Cross Platform Fonts

In previous versions, when printing a report to a binary file (via $devices.Memory), the
fonts in the report were not always displayed correctly when the report files were
generated and displayed on different platforms, or if the report file was generated in the

dev version of Omnis and displayed in the Runtime version of Omnis.

This issue with cross-platform fonts has now been fixed, but you should note that the
fix only applies to newly created report binaries: therefore, existing report binaries with
this issue will still exhibit the problem, as it is caused by font information stored in the

report binary.

Using style() in Reports
In previous versions, printing a report from a remote form did not show icons retrieved
using the style() function, but this has been fixed.

The style() function usually generates different results when used in a remote task
instance, and the resulting style is suitable for use with the JavaScript client. The fix
allows normal, non-JS client results, to be generated using style() when running in a
report instance inside a remote task.

However, even with this fix, you should note that the call to print the report from the
remote form, which passes the results of style() from some remote form code, will not
work: you need to pass the icon id as the parameter, and call style() from within the
report instance to make this work even with this fix.

Printing Background Images to PDF
When printing to PDF on a Linux headless server, Omnis now reports an error when
attempting to print an object that the headless server cannot print to PDF.

Background images on reports need to be shared pictures (PNGs) to print on the Linux
headless server. To solve this, go to the library prefs and set $sharedpictures to
kSharedPicModeTrueColor. Then open each affected report class in the report class
editor; Omnis will ask if pictures are to be converted to shared, so respond with Yes.
The reports will now print to PDF in the headless server, and additionally the report
classes are much smaller.

Localization
Overriding the Language
You can now override the current language set in the localisation data file by setting an
item in the Omnis config.json file, which can be used with the Linux headless server.
The new entry is called "language" and is located in the "defaults" section. It defaults to
empty, which means the setting in omnisloc.df1 will be used. To override the language
setting in omnisloc.df1, you can add the name of a language in omnisloc.df1 to the
language item.

What’s New in Omnis Studio 10.1

144

This fixes an issue when using the $formatstring property on Linux Headless Server

and the German locale (LANG=de_DE.utf8).

Studio.stb file
In previous versions, you could not include cr (carriage return), lf (linefeed), and tab in
strings in the studio.stb file. These characters can now be represented by <cr>, <lf>
and <tab> in studio.stb. The Find Strings dialog automatically generates these escape

sequences.

JSON Control Editor
JavaScript Variable Prefix
There is a new ‘Options’ item on the JSON Control editor toolbar to allow you to set
custom JavaScript variable prefix for properties.

OJSON
$listorrowtojson()
A new iOptions parameter has been added to the $listorrowtojson() method in the
OJSON external component, to allow null and empty values to be omitted from the
returned JSON. The new definition for the method is:

❑ $listorrowtojson()
$listorrowtojson(vListOrRow [,iEncoding=kUniTypeUTF8, &cErrorText,
iOptions=kOJSONoptionNone]) converts the list or row to JSON. Returns JSON
with specified encoding (UTF8, UTF16BE/LE, UTF32BE/LE or Char). Returns
NULL and cErrorText for an error

The iOptions parameter can be used to make $listorrowtojson process all members of
a top-level row, and discard empty or null values appropriately, recursively descending
into child lists and rows.

The iOptions parameter can be one of the following constants, which can be summed
together to get the desired result:

❑ kOJSONoptionNone (the default)
0 - No option specified - results in the old behavior

❑ kOJSONoptionOmitEmpty
1 - Omit empty values, objects and arrays from the output JSON

❑ kOJSONoptionOmitNull
2 - Omit NULL values from the output JSON

OW3 Worker Objects
HASH Worker Object
Support for MD5 and HMAC hashes has been added to the OW3 HASH Worker
Object. There is a new constant for MD5, kOW3hashMD5. HMACs can be generated
for all hash types except PBKDF2 and the SHA3 hashes. The maximum key length for
a HMAC has been increased from 32 to 64.

To generate an HMAC rather than a hash, supply the binary key as the hash
parameters parameter of $inithash – an empty row as this parameter generates a hash

rather than HMAC.

To verify an HMAC rather than a hash, supply the binary key as a new binary last
parameter to $initverifyhash() – this is optional and its presence indicates HMAC.

 Deployment

 145

FTP Worker Object
$progress can now be called for synchronous operations.

HTTP Worker
The version of libcurl and other externals used in the OW3 HTTP Worker has been
updated, as follows:

❑ Updated curl to version 7.65.3

❑ Updated libssh2 to version 1.9.0

❑ Updated mbedTLS to version 2.16.2

Deployment
Headless Server Log Files
You can now generate a daily log for the Omnis Server by setting a new "daily"
member in the "logToFile" item in config.json.

The item defaults to false, which means the current hourly logging is used. If set to
true, Omnis creates a new log file for each day. In addition, Omnis re-uses the log file
for a day if it is already present at startup. The rollingcount applies as for hourly logs.

Auto Update
When running the auto update script some feedback that the script is running can now
be provided in a console window. To enable this, you must place a file (which can be
empty) named ‘showconsole.txt’ in the same directory as update.bat. When this file is
present, a console window is displayed while update.bat is running.

Omnis data folder
Resources 25599 and 25600 can now be used to specify the Omnis data folder on the
Windows platform. You can edit the omnisdat.dll string table with a resource editor and
modify 25599 and 25600 to be used to specify the sub-folders of the appdata directory.
The Omnis data folder becomes:
<appdata folder>\<resource 25599>\<resource 25600>\

If resource 25599 is not empty, resource 25600 must also not be empty.

Omnis VCS
Project Revisions
There is a new option in the VCS, "Project Revisions", that opens a window which
allows you to see all the revisions to a project, rather than having to drill down to a
class and see the revisions which are only available for that class.

The Project Revisions option is available at the project level as a context menu option
in the tree list or via the hyperlinks when clicking in the list of projects. You can filter the
revisions from the droplists according to the user who created the revision or a date
period. You can also filter by typing in the edit box.

You can drilldown to see which labels have been applied to the revision by right-
clicking on it. This window also allows you to compare or copy out in the same way as
the existing class level revision window. You can also select multiple classes to copy
out multiple revisions. It is also possible to double-click rather than using the context
menu to view the revision data.

What’s New in Omnis Studio 10.1

146

Exclude Classes
The Omnis VCS now allows you to exclude specific classes from a build. The context
menu on the project class list now includes the option "Exclude Classes" which allows
you to select classes you do not wish to include in a build.

File system folders
The VCS now allows you to check in external components without the file system
folders being created within the repository; previously, any folders would have been
created. The old behavior can be restored by unchecking the Check-In preference
"Ignore file system folders for external components".

Prompt for Options and Notes
The VCS will prompt you if you have not activated the Options and Notes tab when
checking in/out. You can manage this new behavior on the VCS Options, Check Out &

Check In tabs using the new "Prompt for Options and Notes" option.

External Components
oXML
Removing Invalid Characters

A static function $removeinvalidcharacters has been added to the oXML component to
remove invalid characters from XML data.

❑ $removeinvalidcharacters
$removeinvalidcharacters(&xData,iEncoding,iReplaceChar,&cErrorText) discards
or replaces invalid XML characters in xData and returns the number of characters
discarded or replaced, or NULL and cErrorText if an error occurs.
xData: The data to check for invalid XML characters.
iEncoding: The encoding of the xData parameter. One of kUniTypeAuto (defaults
to kUniTypeUTF8 if encoding cannot be determined), kUniTypeUTF8,
kUniTypeUTF16[BE|LE], kUniTypeUTF32[BE|LE], and kUniTypeNativeCharacters.
iReplaceChar: Either -1 meaning discard invalid XML characters or the value of
the character (0-255) used to replace the invalid XML characters.
cErrorText: Receives error text if an error is returned.

Invalid XML characters are deemed to be characters less than space, that are not tab,
carriage return or linefeed.

 External Components

 147

What’s New in
Omnis Studio 10.0

The Omnis Studio 10.0 release provides a significantly enhanced Method Editor
allowing free-type entry of Omnis code, new features to make your apps accessible for
people with disabilities, and a new conversion tool for migrating your Omnis datafile
based apps to SQL. In addition, there is a new Remote Object class for executing
methods on the client, and a new JavaScript editor to allow you to enter a whole block

of JavaScript code directly into a method.

The following new features have been added to Omnis Studio 10.0:

❑ Method Editor
The Method Editor in Omnis Studio 10.0 has been significantly enhanced, and
now allows you to enter Omnis code directly into each command line in a method,
with additional help from the Code Assistant; in addition, a new JavaScript Editor
allows you to add or edit whole blocks of JavaScript code into client executed
methods (the new embedded text editor also works for SQL & TEXT blocks)

❑ Accessibility
a comprehensive set of features to support the Web Content Accessibility
Guidelines (WCAG 2.0) to help to make your applications more accessible,
primarily for people with disabilities; specifically, a number of ARIA properties have
been added to most JavaScript controls which allow by screen readers to describe
the controls, plus tabbing between and inside fields has been improved to allow
end users to navigate a form entirely from the keyboard or by voice

❑ New & Enhanced JavaScript Controls
There is a new JS Toolbar control for remote forms, and a new External
component iCalendar for managing calendar events in remote forms (also window
classes); plus several of the other JavaScript components have been enhanced,
including new shortcut keys for Edit controls, new properties for the Segmented
and Progress controls to improve appearance, and the ability to upload multiple
files in the File Control; plus several enhancements for Data Grids including the
ability to validate data in cells, to copy selected data from the grid, and to fix a
number of columns on the left of the grid

❑ Remote Debugger
Remote Debugging allows you to debug and test your Omnis libraries and code
located on a remote server

❑ Remote Objects
Remote Object classes are Object classes that can be instantiated and executed
entirely on the client in a client-executed method in a remote form; this will allow
you to make your web & mobile apps more agile and efficient

❑ Web and Email Worker Objects
there are new OW3 Worker Objects for JavaScript (node.js), POP3 email, CRYPTO
encryption or decryption, and HASH for hashing data, plus Secure FTP support has
been added to the FTP worker object

What’s New in Omnis Studio 10.0

148

Method Editor
The Method Editor has been significantly enhanced, including the Code Editor part
(right-hand panel) which now allows you to enter Omnis code directly into each
command line in a method, replacing the point-and-click style of code entry available in
previous versions of Omnis Studio. When combined with the existing Code Assistant
(introduced in Studio 8), and many new keyboard shortcuts, the enhanced Method

Editor will allow you to write Omnis code quicker and more easily.

The old Command selection palette, which appeared at the bottom of the Method
Editor window, and included the Command list and parameter options, has been
removed from the Method Editor. To enter a command, you now tab or click into the
first line of a method, then type the first few letters of a command name, and select it
from the Code Assistant popup list using the arrow and Return keys. As you type a
command or line of code, the Code Assistant will provide more help with command
syntax, variable names, parameters and command options.

To enter a line of code in the new Method Editor:

• Click or tab into an empty method line; the insertion point should be at the start of
the empty method line; you can press Ctrl-N to create a new line under the current
line

• Type the first few letters of the command you want to enter; for most commands
you will only need to type 2 or 3 characters (you can ignore case and leave out any

spaces in the command name)

• As soon as you start to type, the Code Assistant will drop down automatically
showing a list of commands that match the characters you have typed; you can
press Tab to select the first/selected command in the list, or use the Arrow keys to
navigate up or down the list, and press Return/Enter to select a command

• Having selected the command, you can start to fill out its parameters; again, you
can type the first few characters of a variable name or parameter and select it from
the Code Assistant help list

For example, to enter a calculation using the Calculate command, you can type “ca”
(note lower case) and press the Tab key to select the Calculate command from the
help list, which should be the first command in the list. The insertion point should now
be between ‘Calculate’ and ‘as’. Type the first few characters of the variable name or
notation you want to enter, select the variable or notation from the help list (you can
press Tab to select the first item in the list):

 Method Editor

 149

Once you have selected the variable name for your calculation, you can press Tab to
go to the end of the command line, in this case, after the ‘as’, and then enter the
calculation, including any functions or notation.

In all other respects the Method Editor behaves the same as in previous versions,
including the Chroma coding which has been greatly enhanced with an updated theme.
The following sections provide more detail about entering commands in the enhanced
Method Editor.

Tokenization
Omnis is a tokenized language, and that remains the same in Studio 10.x. This means
that all method text has a single canonical representation generated from the tokenized
representation of the code. As you enter text into the new Code Editor, Omnis
tokenizes the code and then updates the editor with the canonical representation. For
example, this means that extra whitespace will be deleted, and attempts to indent the

code using a non-default indent will have no effect. In addition, each command must
occupy a single line, and command lines do not wrap. Each level of indent corresponds

to two spaces.

Entering Code
To enable the free type entry of Omnis code in the Method Editor, there has been a
number of enhancements in the editor interface, including enhancements in the Code
Assistant, new Help panels at the foot of the editor window, new and updated menu
options, and a whole raft of new keyboard shortcuts to speed up code entry.

Ctrl-space

The Code Assistant drops down automatically when you type a command name or
some notation, but you can force the Code Assistant to open at other times. To open
the Code Assistant manually, position the caret in the code text, press Ctrl-Space, and
the text immediately before the caret is used to determine the contents of the Code

Assistant help list.

One situation in which this is useful is if you cannot remember the syntax of a
command: position the caret immediately after the command name, press Ctrl-Space
and then down arrow, and you will see the command syntax in the Code Assistant help

list.

Undo and Redo

The Method Editor now supports multiple levels of Undo, and Redo. (The multi-level
Undo/Redo also applies to all Edit fields in the thick client and IDE.)

Commands

To enter an Omnis command the cursor must be on an empty line, and you can start to
type the name of the command you need. As soon as you type the first letter, the Code
Assistant will open automatically, displaying a list of commands starting with that
letter: note that the command filters may limit which commands are shown, see below
about the filters. As you type further letters of the command name, the Code Assistant
refines the list of available commands. In most cases you will only need to type the first
2 or 3 letters to locate a command. The text immediately before (to the left of) the caret
is used to determine the content of the Code Assistant help list.

To select a command from the Code Assistant help list, you can press the Tab key to
select the first command displayed in the list, or you can use the arrow keys to
navigate up and down the help list and use Return to choose the selected command.

Assuming the cursor is at the end of the selected command name, you can start to
enter its parameters, and the Code Assistant should pop up automatically at the

insertion point whenever a variable name or parameter is needed.

What’s New in Omnis Studio 10.0

150

Command Filters

The commands in Omnis perform many different functions, including many legacy
features that are no longer required for creating web and mobile apps using the
JavaScript Client. There is a new filter mechanism in the Method Editor to filter the list
of commands that are displayed in the Code Assistant help list, primarily to remove
any old commands, including those that allow you to manage Omnis datafiles.

Note you can still use the excluded commands in your code, and methods in converted
libraries using these commands will continue to work – the filters just hide the
commands from the Code Assistant help list.

The command filter is set under the Filter Commands submenu in the Modify menu:
note this is only visible when the cursor is in the code entry area. The Exclude Old
Commands filter is enabled by default, which excludes over 100 old commands, plus
there are other filters available that exclude smaller subsets of commands. You can
disable the current filter using the No Filter option, in which case all the commands

available in Omnis will be shown in the Code Assistant help list.

The current filter option is saved with the Window Setup for the Method Editor: if the
saved value is no longer present, the editor reverts to no filter and all commands will be
shown in the Code Assistant.

The Reload Command Filters option reloads the filters from the commandfilters
folder, without having to quit Omnis, which is useful if you have changed or added any

filters.

Further Command Filtering

Normally, all commands matching the first typed character appear in the Code
Assistant list, but you can limit or change which commands are shown depending on
the number of characters typed – this may be useful if you want specific commands to
always appear, instead of the default ones that appear first in the alphabetical list of
commands. You can activate this further command filtering by enabling the Use
Minimum Lengths option on the Filter Commands submenu.

The filtering enabled by the Use Minimum Lengths option is controlled in the file
min_command_characters.json (located in the studio folder) which specifies the
minimum number of characters to be typed for a specified command.

The JSON file contains an object, where each member name is either a command
name, or a regular expression matching a set of command names. The value of each
member is the minimum number of characters to type (default 1 if there is no match for
a command). In the following example, Quit method appears as soon as you type Q,
whereas the other Quit commands require you to type Qu, and the Queue commands

require you to type Que:

 Method Editor

 151

 "^Queue.*": 3,

 "Quick check": 4,

 "Quit method": 1,

 "^Quit.*": 2

Regular expressions must start with ^, otherwise the entry is treated as a full command

name.

If the file is not present in the studio folder, or if it cannot be loaded for some reason
(e.g. invalid JSON syntax), the Use Minimum Lengths menu item is hidden.

Omnis loads the file min_command_characters.json at startup, and when you execute

the Reload Command Filters command on the Filter Commands menu.

Editing the Command Filters

You can create your own filters, or change the ones provided, to change the
commands that are shown in the Code Assistant help list. If you wish to adapt the
default filter, you are advised to make a copy of it, rename the copy, then edit and save
the new file.

The command filters are located in a folder called ‘commandfilters’ in the Studio folder:
the default filter is called ‘Exclude_Old_Commands.json’. Each file in this folder is
loaded in the Filter Commands submenu, and the name of the JSON file is used as the
menu option name. (You can examine the contents of each filter file to see which
commands they exclude from the Code Assistant help list.)

The content of each JSON file is an object with a single member named “exclude”,
listing any commands that are to be excluded from the Code Assistant help list. The
exclude member is an array, and each array entry is the exact command name (case
insensitive).

You can exclude groups of commands using a regular expression to match command
names: in this case, you need to anchor the regular expression to the start, using ^.
For example, to exclude all old MSM… commands, you can create a filter file with the
following contents (name the file ‘Exclude_MSM_Commands.json’):

{

 "exclude": [

 "^MSM.*"

]

}

As well as creating an exclude filter, you can create a filter to only include certain
commands, although in practice this might only be useful if you want to use a very
small subset of commands in the Method Editor (since all commands that are not
included are excluded). To create an include file, create a new filter file containing an
“include” object, and add any command names to be included, e.g. to only include Do

and Calculate (and exclude all other commands!), the filter should contain:

{

 "include": [

 "do",

 "calculate"

]

}

The default or initial filter is set in the ‘currentCommandFilter’ option in the
‘codeAssistant’ section of the config.json file: if this is empty, or the command filter files
or folder are removed, then "no filter" is selected.

You need to select the Reload Command Filters option in the Modify menu to load

any new or edited filters into the Filter Commands submenu.

What’s New in Omnis Studio 10.0

152

Case and Omitting Spaces

You can ignore the case of all command names, so you can always start to type a
command name in lower case. Furthermore, if the command name includes spaces,
you can omit the space(s), which will speed up command selection in the Method
Editor.

Whether or not you include the space can, however, determine which command is
selected by the Code Assistant: this is important for the Do… commands, for example.
Typing do<space> will immediately enter a Do command (and the insertion marker will
be ready to accept the calculation) and close the Code Assistant. Whereas, to select
the Do method command, you can type dom<tab> (note no space), or to select the Do
async method command, you can type doa<tab>. This is quicker than typing just ‘do’
and then selecting the command you want from the droplist in the Code Assistant.

Another example would be in the case of the If… commands. Typing if<tab> will
immediately close the Code Assistant and enter an If calculation command, whereas,
to select the If canceled command, you can type ifc<tab>. Similarly, typing on<space>
will select the On event command, while typing ond<tab> will enter the On default
command.

Tab key

You can use the Tab key to tab between the parameters of all of the commands in the
method. This is an easy way to navigate through the commands, skipping command
names and keywords and moving the insertion point to the next available position. You
can also use the Tab key to select the first or selected line in the Code Assistant: in this
case, if you select a method, such as Do List.$define, the opening and closing
parenthesis () will be added automatically and the cursor is placed between the
parenthesis.

Construct Commands

If you enter a construct command using the Code Assistant, such as If, it will add the
end construct command automatically, in this case, End If. You can use Undo to
remove the end construct command added automatically if it is not required.

The Method Editor checks for missing associated commands as you edit, e.g. If with no
End If, or For with no End For.

Command Options

The command options that were entered using a checkbox or radio button in the
command palette in previous versions can now be entered directly from the keyboard.
To enter options in the new Method Editor, you either type (at the start of the
command parameters if nothing is required prior to the options, or if you have entered a
parameter, you type space and then (. This causes the Code Assistant to pop up the
available options. After you select an option in the list, the Code Assistant adds it to the
text and automatically closes the option list using). If there are no more options
available, it positions the caret after the). Otherwise the caret is before the) and you
can type comma to add a new option: when you type comma, the Code Assistant pops
up a list of remaining available options.

Class Names

To enter a quoted class name, you can press Ctrl-Space when the caret is positioned
after a double quote (or some text following a double quote) and select the name from

a quoted list of non-system class names in the current library.

Side by Side Editors

You can open two instances of the method editor to show two methods from the same
class, for example. You can open a second copy of the method editor as follows:

❑ Press the Shift key while performing an action that opens the method editor, such
as double-clicking on a remote task.

 Method Editor

 153

❑ Use the Two Editors Side By Side option on the method editor View menu.

Omnis opens a second editor, next to the current editor window, so that each editor
uses half of the available screen space. On Windows, this means the available space
in the main Omnis application window, and on macOS, it means the available space on
the current monitor less the menu bar or toolbars.

When two editors are open, the same method in each class can be selected in both
editors, but the editor in the background does not display the method: it displays the
text "This method is being edited in another method editor”.

The editor in the background keeps up to date with changes in the foreground editor,

e.g. when you add or delete a method, the method list in the other editor updates.

There is a keyboard shortcut for the Two Editors Side By Side command, which
defaults to Alt+S on Windows and Cmd+Opt+S on macOS.

Panels

The Method Editor has two panels below the code entry window. The debug panel
works as it did in previous versions. The command entry panel has been replaced with
the editor panel.

You can select the panel (or hide it) using the small popup menu immediately to the left
of the horizontal scrollbar at the bottom of the code entry window.

Editor Panel and Errors

As you enter code, Omnis tokenizes the entered code and provides real-time feedback
that indicates if the method code is valid. Valid method code is syntax-colored,
whereas invalid method code is partially syntax-colored, and the invalid component(s)
in the method line underlined using a colored wavy line (the color is taken from the
current theme or set in the “badsyntaxcolor” $appearance preference).

The editor panel at the foot of the Method Editor window displays the number of
method errors, and when the caret is positioned within text causing an error, it displays
the error text.

The editor panel has three buttons that allow you to handle errors. The Next and
Previous error buttons (forward and back arrows) navigate through the errors in the
method. The Fix error button (check mark) allows you to fix certain errors and will only

What’s New in Omnis Studio 10.0

154

be enabled when the caret is positioned in some text for an error. The Fix button is

enabled to allow the following errors to be fixed:

❑ “Unrecognized variable name, item name or attribute” and "Unrecognized variable
name”: Pressing the Fix button opens the Create Variable dialog.

❑ “) missing”: Pressing the button adds the)

❑ “Partly entered keyword”: Pressing the button completes the keyword

In addition, the editor draws a red marker in the vertical scrollbar for each method line
containing an error. The marker in the scrollbar is positioned so that when the method
line containing the error is scrolled to be the first displayed line, the top of the scrollbar
thumb lines up with the top of the marker. (Note that this is why the vertical scrollbar
always allows scrolling even if all method lines fit within the editor window.)

Create Variable Prefixes

When you encounter the "Unrecognized variable name” error when entering code in
the editor, you can press the Fix button to open the Create Variable dialog to create the
variable. You can now specify the initial scope for a new variable using a predefined
prefix. For example, you can begin the variable name with “i” to create an instance
variable, or “p” to create a parameter. The default variable prefixes are:

Prefix Variable scope

i Instance

c Class

p Parameter

l Local

t Task

The prefixes allowed in the Create Variable dialog can be configured in the Omnis
configuration file (config.json) using a new entry called “createVariableScopePrefixes”
and located in the ‘codeAssistant’ section in config.json:
 "createVariableScopePrefixes": [

 "i:Instance",

 "c:Class:",

 "p:Parameter",

 "l:Local",

 "t:Task"

],

The Create Variable dialog processes these entries in array order, and as soon as it
finds a scope that is allowed for the method being edited (e.g. instance variables are
only allowed for class types that have instances), where the first part of the entry value
case insensitively matches the start of the variable name, it uses the configured scope
(the second part of the entry value after the colon) to set the initial scope suggested by
the dialog. If no prefix match occurs, the scope suggested is local.

Create Variable Suffixes

As well as setting the scope of a variable, using a prefix, you can specify the data type
of a variable using one of a set of predefined suffixes. For example, you could enter the
name “iDataRow” which would create a variable of type Row, typing “iDataList” would
create a list, and typing “iVarRef” would create an item reference. The default variable
suffixes are:

Suffix Variable type

Row Row variable (kRow)

List List variable (kList)

 Method Editor

 155

Ref Item reference variable (kItemref)

Date Date variable (kDate)

Obj Object variable (kObject)

Bin Binary variable (kBinary)

The suffixes allowed in the Create Variable dialog can be configured in the Omnis
configuration file (config.json) using a new entry called “createVariableTypeSuffixes”
and located in the ‘codeAssistant’ section in config.json:
 "createVariableTypeSuffixes": [

 "Row:kRow",

 "List:kList",

 "Ref:kItemref",

 "Date:kDate",

 "Obj:kObject",

 "Bin:kBinary"

],

Omnis strips any consecutive digits from the end of the desired variable name, and
then compares (case independently) the end of the resulting name string against the
suffixes in the config.json array (strings before the colon in each array entry). If there is
a match, and if the variable type is suitable (e.g. it is not a non-client executed type
when creating a variable for a client-executed method), then the initial type is set using
the type constant after the colon.

Editor Helper dialog

In addition to the error reporting, there is a button to open the Helper Dialog, which is
context specific. This button is disabled when the context means there is no helper
dialog. If a helper dialog is available, the button is enabled, and its tooltip changes
appropriately: pressing Alt+H will open the Helper Dialog.

The editor Helper Dialog is enabled in the following cases:

❑ When the caret is positioned in the parameter field of the Queue keyboard event
command. In this case, the helper dialog allows you to record keys.

❑ When the caret is positioned in the title parameter of the Working message
command. The helper dialog is the working message configuration dialog.

❑ When the selection includes only JavaScript: commands (in a client executed
method). The helper dialog button will open the JavaScript editor. All JavaScript:
command lines in the same contiguous block are selected, and their JavaScript is
then editable using the popup editor. When the popup editor closes, Omnis
replaces the selected JavaScript: commands with JavaScript: commands

containing the contents of the popup JavaScript editor.

❑ When the selection includes only Sta: commands (for entering a SQL statement on
multiple lines). The helper dialog opens the same external editor for JavaScript but
in SQL mode allowing you to enter a SQL statement over multiple lines.

Command Syntax Help

You can view the full syntax for a command, including all its parameters and options, in
the Help panel at the bottom of the editor window. This type of help is displayed once

What’s New in Omnis Studio 10.0

156

you have selected a command from the Code Assistant list, or you have typed the
command name in full – as you reach the last character of the command the syntax
help is shown. For example, if you type the Do method command, its syntax is show in
the Help panel at the bottom of the editor window.

You can hide the command syntax by unchecking the "Show Syntax Strings" option on

the View menu.

Method Tooltips

Tooltips are displayed when you hover the pointer or I-beam over a method name in
the Method Editor, including methods listed in the Method tree list on the left of the
editor window:

or method names that are being called in your code (assuming Omnis can identify the

method being called).

The method name and its code are displayed in the tooltip and you can scroll longer
methods using the mouse or trackpad. You can hold down the Shift key to keep the
tooltip window open when you move the pointer, which allows you to scroll the window
more easily.

The Method tooltips provide a useful preview of a method, without having to switch
away from the current/selected method you’re working on. You can dismiss the method
tooltip by moving the mouse away from the method name and tooltip, or by pressing
Escape.

The following entries in config.json control the size of the Method tooltips:

❑ "maxHeightOfMethodTooltipGeneralInformation": 100 (value in pixels)

❑ "maxVisibleMethodLinesInMethodTooltip": 20 (number of lines)

When used with the method tree list, the maximum width used is the width of the code
edit text field.

 Method Editor

 157

Maximum Number of Methods

The maximum number of methods allowed per class has been increased from 501 to

4096.

Menus and Keyboard Shortcuts
The Method Editor menus have been re-worked and improved for Studio 10 and
include several new commands or options. The keyboard shortcut keys for some
options have changed and these are listed below where they occur – there is a
summary of the keyboard shortcuts at the end of this section. Where there are
significant changes, an image of the menu from Studio 8 and Studio 10 is shown, so
you can compare them.

View Menu

The View menu in the Method Editor has several changes or additions; some of the
new options are discussed elsewhere. The Show Debug Palette and Show Chroma
Coding options have been removed; the latter option has been replaced by a more
comprehensive set of color options stored in the default theme in the IDE (you can
change the theme in the Studio Browser Hub under Options, including a dark theme

which may be more suited to working in the code editor).

Studio 8 Studio 10

Show Method Names Shift+F8 Show Method Tree Ctrl/Cmnd+Shift+N

What’s New in Omnis Studio 10.0

158

Goto Panel

The Goto Panel option lets you select a different pane in the Variables list (with
keyboard shortcuts Ctrl+0 to 5). It also lets you switch the insertion point to the Code
text entry area (Ctrl+7) ready to enter some code, or back to the Method Treet list from
the code entry area (Ctrl+8).

Studio 8 Studio 10

Goto Code Ctrl+L Ctrl+7

 Note the Goto options were on the Modify
menu but are now on the View menu

Debug Menu

The Execute Method and Test Form commands have been added to the Debug
menu. Note that the shortcut keys for Go, Trace and Step Out>>Go have changed,
plus you can Set Go Point using Shift+F2. The From Line, To Line and Step Out
options, and the debug Options, are unchanged.

Studio 8 Studio 10

Go Ctrl+Shift+G F5

Trace Ctrl+Shift+T Ctrl+Shift+E

Having entered code using the new text entry method, running the debugger on your
your code is exactly the same as in pevious versions of Omnis. You can set the Go
point, then click Go or Step in to execute your code: as your code executes the

 Method Editor

 159

debugger will scroll automatically to the center of the code entry area when the current

line is positioned at around 75% of the visible lines.

The Edit Keys option has been removed and replaced with a section in the $keys
property in the Omnis preferences, which you can edit in the Property Manager.

Studio 8 Studio 10

Debug>>Edit Keys option

$keys Omnis preference >
methodEditorAndRemoteDebugger

See later in this section for information about changing the keyboard shortcuts.

Modify Menu

The Modify menu contains new submenus for Errors and Find And Replace. The
Execute Method option has been moved to the Debug menu, while the Goto panel
and Fonts options have been moved to the View menu. The various Line options have
been moved to the Line submenu.

The Comment & Uncomment options have been merged and moved to the Selection
submenu. For classes which have an associated editor, the Modify This Class option
opens the class editor, such as a JavaScript remote form; the shortcut key is Shift+F8.

Studio 8 Studio 10

What’s New in Omnis Studio 10.0

160

There are additional entries that depend on the focus, as follows.

❑ If the focus is on the Method Tree (on the left, containing a list of methods for the
class), the Modify menu contains a submenu called Method, which allows you to
Insert Method (at the end of the method list, or Before or After the current method),
or Delete Selected Methods

❑ If the focus is on the Code text entry area (on the right), the Modify menu contains
submenus called Line and Selection: see later in this section for info.

Errors Menu

The Modify>>Errors submenu is new and contains Next error, Previous error and
Fix error commands, that can be used instead of the buttons on the editor panel.
These also have keyboard shortcuts.

Note that when the focus is on the method tree, this menu is only present when only
one method is selected.

Find And Replace Menu

The Modify>>Find and Replace submenu is new and allows you to perform a local
find and replace on the method text for the current selected method. Note that when
the focus is on the method tree, this menu is only present when only one method is
selected. This menu also allows you to toggle options such as match case.

The menu commands also have keyboard shortcuts, such as Ctrl+F to open the Find
panel, Ctrl+H to open Find and Replace, or Ctrl+G to find next. When you first select
the Find or Replace command, the editor opens a panel immediately above the code
entry field, where you can enter the find (and replace) text.

 Method Editor

 161

The panel also contains buttons that perform the same operations as the menu items,
as follows:

Match case Alt+C

Match whole words Alt+W

Use regular expressions Alt+E

Find Next or Previous Ctrl+G or Ctrl+Shift+G

(to Find Previous, you can shift click the button)

Replace next Alt+R

Replace all Alt+A

As you type characters into the find text field, the code text area dynamically updates to
reflect the found text. It highlights the found text (e.g. the text ‘lresponsedetails’ is
searched and highlighted in the above image), and it also adds a green marker to the
vertical scrollbar, in a similar way to the error marker, drawn to the right of the error
marker.

After closing the Find (or Find and Replace) panel, you can still use Find Next and Find
Previous, although the editor no longer highlights all matches.

What’s New in Omnis Studio 10.0

162

Line Menu

The options in the Line submenu replace several options in the Modify menu in
previous versions, including Insert Line After, Insert Line Before, and Toggle Comment.
Note that you can Right-click on the current or selected lines of code to open a context
menu with similar options.

The Comment and Uncomment line options available in previous versions have been
merged into a single Toggle Comment command, which has the single keyboard
shortcut Ctrl+/ for commenting or uncommenting lines.

The Line Menu contains the new option Select Line which selects all the text in the
current line (triple-clicking on a line also selects the line), and the Delete Current Line
option which deletes the current line (containing the cursor or word selection), or all
lines where multiple lines are selected.

The Duplicate option duplicates the current line (if no text is selected) or all selected
lines, and places the duplicate line(s) immediately below the original line(s). The
command also selects the duplicate text, which then allows you to use repeated
Duplicate commands to generate multiple copies.

The Goto Line Number option opens a box to allow you to enter a line number to go
to. You can show line numbers in the code area using the Show Line Numbers option

in the View menu.

Commenting / Uncommenting Lines

You can comment or uncomment a single method line by clicking anywhere in the line
(or you can select the whole line) and selecting the Toggle Comment option, or press
the Ctrl+/ shortcut. To comment or uncomment multiple lines, you need to select all the
lines and then use the Toggle Comment option: in this case, all the affected lines will
remain selected after toggling their comment state. Commenting a single empty line
does not select the commented line: in this case (and when "Move to next line after
toggle comment" is off, see below), the caret is positioned after the comment character

and the space, ready for you to type the comment.

You can force the cursor to move down to the line after the commented/uncommented
line or block of selected lines by enabling the Move To Next Line After Toggle
Comment option in the Line menu (the option is off by default): the state of this option

is saved with the Window Setup.

 Method Editor

 163

Selection Menu

The Modify>>Selection submenu contains new commands Upper Case and Lower
Case: note that these options only change case for text that does not have a single
canonical form, e.g. text in strings.

In addition, the Selection submenu contains the option Select Word which selects the
word containing the insertion point, or where the insertion point is at the beginning or
end of a word; in the latter case the word to the right or left of the insertion point is

selected.

Word Selection

You can double-click on a word to select it, or double-click and drag the pointer to
select multiple words. If you double-click on a single word that is enclosed in quotes
(e.g. like the foo in Calculate lcVar as "foo"), the quotes will not be selected. In previous
versions the quotes would have been selected, but if want to enable the old behavior
you can set a new option "entryFieldsIncludeQuotesWhenSelectingWords" in the
"defaults" section of config.json to true; the option defaults to false which enables the
new behavior.

Method Editor Context Menu

The Method Editor context menu (opened when you right-click on the Code text area)
has a new hierarchical menu called Paste as. You can use this to paste multiple lines
of text from the clipboard into Sta:, Text: or JavaScript: commands. The Paste as
hierarchical menu items are enabled when the caret is positioned on an empty line.

Setting Breakpoints & the Breakpoint Context Menu

You can set a Breakpoint, a One-time breakpoint or the Go Point using the pointer (to
click on the code margin) and the keyboard:

❑ You can set a Breakpoint using a single click in the left margin of the code editor,

next to any line of code where you want the breakpoint.

What’s New in Omnis Studio 10.0

164

❑ You can set a One-time breakpoint using Ctrl/Cmnd+click next to the line of code

❑ You can set the Go point using Shift+click next to the line of code

(Existing users should note that you can no longer set the Go point by double-clicking
in the left-hand margin.)

Alternatively, you can use the Breakpoint context menu by right-clicking in the left

margin of the code editor, next to any line of code, and selecting the option.

In addition, the Breakpoint context menu shows Delete and Disable/Enable breakpoint
commands when there is a breakpoint already set for the line. It also shows the
commands to Clear/Disable/Enable all breakpoints. And if there is an active stack, as

well as set Go point, there is a command to Clear the stack.

Keyboard Shortcuts

A major enhancement in the Method Editor has been to add many new keyboard
shortcuts to allow you write Omnis code from the keyboard alone, without having to use
the pointer. With this in mind, the most significant menu options in the Method Editor
now have keyboard shortcuts, including most of the options in the Modify and Debug
menus, as well as the Find and Replace options.

A complete and updated list of keyboard shortcuts has been added to the Studio 10.1
section earlier in this manual.

Keyboard Shortcut Configuration

The keyboard shortcuts are stored in a new property in the Omnis Preferences ($prefs)
called $keys, which you can edit in the Property Manager to change the keyboard
shortcuts. Note this feature replaces the Edit Keys option on the Debug menu in
previous versions, and it also contains the keyboard shortcuts for Edit fields and the

Edit menu.

The first time you edit $keys and press OK, Omnis generates a file called keys.json in
the Studio folder, that records the configuration of the keyboard shortcuts (as listed
above); if you don’t make any changes in $keys the default keyboard shortcuts will be

stored in keys.json.

You can edit the Shortcut Keys options by selecting $keys in the Property Manager
(find it under the Omnis Preferences in the Studio Browser), then select
‘methodEditorAndRemoteDebugger’.

 Method Editor

 165

To edit a value, you can use the Delete or Backspace key to clear the current
shortcut, and then type the desired shortcut key combination. You can use all the
standard Key modifiers (Ctrl, Cmnd, Alt, Option, Shift, etc) as well as all the letter and
number keys, plus the numbered Function keys. In addition, you can use the Enter and
Return keys in conjunction with Ctrl/Cmnd, and optionally Shift or Alt/Option, for
method editor menu shortcuts.

The $keys preference also contains the shortcut keys for Edit fields (editFields), which
are documented under the JavaScript Edit Control, and the Edit menu (editMenu)
which has the following shortcut keys:

Shortcut Key Description keys.json item

Ctrl+Y Redo last operation Redo

Ctrl+Shift+F Find and Replace findAndReplace

Ctrl+Shift+G Find Next findNext

Language Syntax
There are a number of changes to the Omnis language syntax that facilitate direct text
entry of commands, and which enable the new Omnis Studio 10.0 language parser to

function properly.

Language Keywords

The following language keywords can no longer be used as variable names:

as at flag

for from into

on returns sec

step to until

During library conversion, any variable names using these keywords are appended

with an integer starting at 1.

Options

Omnis now stores the order in which “checkbox” and “radio button” command options
are specified as part of the method command (remember that the Omnis language is
tokenized, and does not store raw text as entered by the developer). This allows you to

enter the options as text in any order.

The “Select matches (OR)” and “Deselect non-matches (AND)” options of the Search
list command have been renamed to “Select matches OR” and “Deselect non-matches
AND”. This prevents the parentheses in these option names from interfering with

language parsing.

What’s New in Omnis Studio 10.0

166

Braces

Braces have been removed from all commands, except for commands like OK
message, which require three components (a field name or square bracket calculation,
options and a calculation). For these commands, when they use square bracket
calculations, you must escape () { } characters in the calculation outside square
brackets if there is no text after the parentheses. In this case, these characters need to

be escaped using square bracket notation, e.g. [‘(‘] escapes (.

Comments

The way comments are displayed has changed. The character used to show a
comment is now # (hash) rather than ; (semicolon), and the inline comment marker is
now ## rather than ;; (library conversion will change ; to #).

Changing the comment prefix character to # allows the language parser to work
correctly when ; is being used as the function parameter separator (as there would
otherwise be parsing confusion caused by a call with an omitted parameter).

Entering a new comment

To enter a new comment, on an empty line, you can type # and then the comment text,
with or without a space after the #. You can also type ; to create a new comment, but
the comment is marked with #.

To enter an inline comment, press the space key followed by ## at the end of a code
line, and then enter the comment text. Inline comments are positioned over on the right
of the code entry area: they are left-tab aligned according to a tab which is indicated by
a small marker at the top of the code entry area: you can drag this marker to reset the
tab position.

The Sta:, Text: and JavaScript: commands (that generate a text block) no longer allow
inline comments (see note in Library Conversion section about inline comments for the
Sta: command). This allows all text after a colon to be treated as significant text, and to
be added to the text block, with the exception of the options string specifying the line

delimiter for the Text: command.

Commenting and Uncommenting code

You can “comment” or “uncomment” the current method line (containing the cursor) or
any selected method line or lines using the Toggle Comment option in the Modify
menu, or using the keyboard shortcut Ctrl-/ (forward slash) – note the same menu
option or keypress can be used to both comment or uncomment method lines or
comments as appropriate. Commented lines must have valid syntax to be
uncommented, otherwise they will remain commented out.

Errors

As the new Method Editor allows any text to be entered, it is possible to enter and store
commands that contain errors. Internally, these are stored in the method with a new
command type, and will cause an error to be reported if you try to export the method to
JSON, or if you try to execute them.

The Find and replace dialog has a new option (Only search method lines containing an
error), which you can use to find commands with an error. When you check this option,
the dialog also checks the regular expression option, and sets the find string to the
regular expression “.*”.

In general, there should not be much need to leave erroneous commands stored in a
method for very long - the editor gives immediate feedback about errors, so in practice
it makes sense to fix them as you code. The Find and replace dialog option provides a
means to double check that all is well with a library. Omnis Studio 10.0 takes this
approach (rather than for example marking all classes with an error count) since errors

should be very much an exceptional case once coding of a method is complete.

 Method Editor

 167

Modified Commands

The step interval for the For command is assumed to be 1, so when entering a For loop
and you want the step interval to be 1, you no longer need to enter this. If you need a
step interval other than 1 you need to enter this into your code.

Obsolete Commands

Some of the commands that were marked with ‘OBSOLETE COMMAND’ in previous
versions (listed in the ‘Obsolete Commands…’ group) have been removed from the
Omnis language and will be commented out in your Omnis code by the converter. The
Translate input/output command has also been made obsolete and will be commented
out.

The Call method OBSOLETE COMMAND will be replaced by the Do code method

command and the method name.

There is a list of obsolete commands that have been deleted in this version in Appendix
A in this manual.

Library Conversion
The changes in language syntax mean that Omnis performs a class-by-class
conversion of a library created using Omnis Studio 8.1.x or earlier. The following items
are converted:

❑ Some obsolete commands will be commented out. In previous versions these
commands were marked with the “OBSOLETE COMMAND” suffix and listed in the
‘Obsolete commands’ group, and have now been removed from the Code Editor
(but most will continue to work in the Runtime version of Omnis). Any commands
that have been removed in this release and are commented out are listed in an
appendix.

❑ The prefix for comments is now #, converted from ;
A space is inserted after the # at the start of comments, therefore comments are
abc rather than #abc after conversion.

❑ Inline comments for JavaScript:, Text:, and Sta: commands Inline comments are no
longer allowed, since all the text after the : is treated as part of the statement or
text. Therefore, on conversion, all inline comments are moved to the next line and
inserted as a standard comment (see below).

❑ Square bracket calculations (ctySquare, ctyParmlist4 etc) are converted so that any

text outside square brackets does not contain unescaped characters () {}.

❑ Any instances of " ##" are detected in method lines and reported as a warning (they
are probably not editable as the parser will treat the text after this sequence as the
inline comment).

❑ Any variables which are named using a language keyword (see earlier for a list) are
renamed, by appending an integer to them (starting with 1 until a new unique name
in its context is created).

Inline Comments for JavaScript:, Text: and Sta: commands

By default, the conversion process will move all inline comments from JavaScript:,
Text: and Sta: commands to the next line in the method, after the original line
containing the inline comment. There are three new options in the "ide" section of
config.json to allow you to control how inline comments are treated.

❑ "libConverterAppendsDiscardedInlineComments"
When true (the default), if the inline comment would otherwise be discarded, the
converter appends a comment command after the JavaScript:, Text: or Sta:
command, containing the inline comment.

❑ "libConverterAddsInlineCommentToStaCommandParameter"
Note that if you use "libConverterAddsInlineCommentToStaCommandParameter"

What’s New in Omnis Studio 10.0

168

to convert inline comments for Sta: commands, then this option will not affect Sta:

commands; see below.

❑ “libConverterInsertsDiscardedInlineComments”
moves and inserts the inline comment before the original line containing the inline
comment (however, if libConverterAppendsDiscardedInlineComments is set to true,

libConverterInsertsDiscardedInlineComments is ignored).

Inline Comments Sta: commands

If you want to keep inline comments as part of the SQL text for Sta: commands, you
can set the item “libConverterAddsInlineCommentToStaCommandParameter” in the
‘ide’ section of config.json to a formatting string, e.g. " -- %" or " /* % */". Omnis
replaces the first % place-holder in the formatting string with the inline comment, and
appends the resulting string to the parameter of the Sta: command. Note that if the
resulting text does not tokenize, e.g. if the inline comment contains text like [#S333]
which does not tokenize, then the comment will be discarded.

If you leave “libConverterAddsInlineCommentToStaCommandParameter” empty (or
supply a string that does not include the % character), then Omnis will discard the
inline comment when converting Sta: commands.

SQL comments for the Sta: command are colored, including /* */ and – comments. The
“syntaxColorProbableSQLComments” option in the ‘ide’ section of config.json is
enabled by default, but can be set to kFalse to disable coloring.

Conversion Logs

The converter adds an entry to the Find and Replace log that allows you to quickly
navigate to each change made by the converter by double-clicking on a line in the log.
In addition, the converter writes a log file to the ‘conversion’ folder in the logs folder in
the data part of the Studio tree. The log file provides a more permanent record of the
changes applied to the converted library. Note that Omnis does not write log entries to
record where spaces were inserted at the start of comments.

JSON generated libraries

When Studio 10 imports JSON generated with Studio 8.1, it parses methods using the
old Studio 8.1 parser, and then applies the same conversion steps as above to the
imported classes. Changes applied by this conversion are written to the Find and
Replace log only.

Syntax Coloring
The chroma coding in the Method Editor has been extended, with several new colors
and styles, which can be changed by changing the theme in the Hub>>Options in the
Studio Browser, or configured by editing the $appearance preference in the Property
Manager (these are stored in appearance.json and the various theme files): the new
colors are in the IDEmethodSyntax group in the appearance.json file. The following
new theme colors and styles have been added:

Color option Description

optioncolor

optionstyle

command options (corresponding to check boxes
or radio buttons in the old editor, e.g. Sound bell
for OK message)

constantcolor
constantstyle

Constants (e.g. kTrue)

eventparametercolor
eventparameterstyle

event parameter variables

functioncolor

functionstyle
built-in and external functions

 Method Editor

 169

Color option Description

hashvariablecolor
hashvariablestyle

hash variables

localvariablecolor
localvariablestyle

local variables

parametervariablecolor
parametervariablestyle

method parameter variables

instancevariablecolor
instancevariablestyle

instance variables

classvariablecolor
classvairablestyle

class variables

taskvariablecolor
taskvariablestyle

task variables

notationcolor
notationstyle

built-in notation attributes

badsyntaxcolor bad method syntax indicators

methodothertextcolor The color for all other text with no specific syntax

color, e.g. separators, dots, etc.

methodhighlightcolor The color of selected method text in the Method
Editor when the control displaying the method
text has the focus

syntaxwordhighlightcolor Color used to highlight syntax elements, e.g. click
on a variable name in the code editor to highlight
all mentions of the variable

methodcurrentlinebackgroundcolor The background color used to display the line
containing the caret in the Method Editor

methodhighlightnofocuscolor The color of selected method text in the Method
Editor when the control displaying the method
text does not have the focus

methodeditorcodebackgroundcolor The background color for the method editor code
area

Note that the existing theme colors variablecolor and variablestyle now only apply to
file class variables (field names) and other components of a variable string, e.g. a list

column name.

Syntax Highlighting

When you click in a syntax element (variable, notation name, command name (not
block commands) or function name), the code editor performs a find and highlights
instances of the element in the current method (note the find highlighting will override

the syntax highlighting if the Find or Find and Replace panel is displayed).

What’s New in Omnis Studio 10.0

170

The view menu contains the option “Highlight Syntax Words” which is checked by
default. There is a new color option"syntaxwordhighlightcolor” in the “IDEmethodEditor”
group in the $appearance Omnis preference, and stored in the appearance.json file.

Printing Methods

When you print methods using the File menu, Omnis now uses the syntax colors from

the default theme (which is designed for a white background). You can turn off this
behavior (and print everything using black text) by setting the entry
“printMethodsWithSyntaxColors" in the “methodEditorAndRemoteDebugger" section of

config.json to false.

JavaScript: Editor
In addition to the main interface changes in the Method Editor, a JavaScript editor has
been added to the Method Editor to allow you to enter a whole block of JavaScript code
directly into the JavaScript: command, rather than line by line as in previous versions.
The new JavaScript editor will popup whenever you edit a command line containing the
JavaScript: command. The editor also allows you to enter a SQL statement if the Sta:
command is selected; in this case, the editor will switch to SQL mode.

To edit or enter some JavaScript, click into or tab to a JavaScript: command line in the
text entry panel, or select a whole JavaScript: command line or multiple lines, and
either

• Press Alt+H to open the JavaScript editor, which in this case is the same as clicking
on the Helper dialog button at the bottom of the Method Editor window

• Or select Open JavaScript Editor from the Modify>>Selection submenu

The content of the JavaScript editor is formed by concatenating the contiguous
JavaScript: command(s) that are selected in the list. This allows you to edit or insert a
contiguous sequence of these commands as a block. Omnis selects unselected lines in
this contiguous block when it opens the window, so all the lines are selected when
viewed behind the editor window. When you have finished editing the JavaScript: text,
you can close the editor window and Omnis replaces the selected JavaScript:
commands with the new content, creating a JavaScript: command line for each line of
JavaScript.

 Method Editor

 171

The editor window allows you to change the theme of the displayed text, and to revert

to the original text.

Spaces & End of Line Characters

There are two new options in the Method Editor View menu to allow you to show
Trailing Spaces and End Of Line characters when editing text in the new popup
JavaScript or SQL text editor:

❑ Show Significant Trailing Spaces
If true, the editor displays trailing spaces for the JavaScript:, Sta: and Text:
commands as the Unicode sp symbol.

❑ Show Selected End of Line As Symbol
If true, the editor displays the end of line character as Unicode symbol cr when the
end of line character is selected. This allows you to see if an end of line character
will be added to the clipboard by a cut or copy, for example.

Both of the new options default to true and are saved with the window setup.

Trace Log
The Send to trace log command now includes the name of the method that issued the
command in column 1. Double clicking on the trace log line takes you to the code line
that issued the command.

In addition, the Send to trace log command now has the "Always log" option. If
specified, the command will always log the message even if $nodebug is true for the
library or the local debugger is disabled (this option is ignored for a diagnostic
message).

Error Processing
There is a new library preference, $clib.$prefs.$errorprocessing, that controls how
Omnis behaves when it would (in Studio 8.1 and earlier) either enter the debugger (if
available) or report the error with an OK message.

❑ $errorprocessing
A kEP... constant that indicates how unhandled errors in methods belonging to this
library are processed. Values of the kEP… constant are:
kEPreport: Report the error by opening the debugger if available or by displaying a
message box
kEPlogStackAndReport: Log the call stack to the trace log and then report the
error by opening the debugger if available or by displaying a message box
kEPlogStackAndContinue: Log the call stack to the trace log and then continue
execution with the next method command

The default value of $errorprocessing after converting a library to Studio 10.0 is

kEPreport.

The call stack written to the trace log is drawn using the bad syntax color from the
appearance settings. The first line contains the error code and error text, and then
subsequent lines in turn show the call that invoked the previous line. You can double-
click on a line to open the method at the relevant method line, provided that the library
is not marked as always private and the class is not protected. The call stack excludes

What’s New in Omnis Studio 10.0

172

entries from methods running in tasks marked as IDE tasks which have their code in an

always private library.

Dynamic Methods & Objects
The handling of dynamically added or modified methods, and dynamically added and
removed objects has been improved.

❑ The stack list has a new menu item, to detach the debugger from an instance.

Previously this was only possible by force-closing the current debug instance.

❑ The debugger tree lazily updates to show new or deleted objects in the current
debug instance: typically, this means it updates either when the debugger window
comes to the front, or while you are stepping through code.

❑ When an instance closes, or an object is removed, Omnis deletes any breakpoints
set in a method in a freed temporary instance field method, and removes all of its
methods (if any) from the method editor history stack used by the back and forward
navigation buttons.

❑ Omnis marks each temporary method (i.e. instance method), using a new icon so
you can recognise these easily in the tree. If you edit such a method, the edits are
saved with the instance, and will be lost when the instance destructs.

❑ You cannot rename a temporary instance object shown in the method editor tree.

Accessibility
This release contains several enhancements to support the Web Content Accessibility
Guidelines (WCAG 2.0) which will help to make your applications more accessible,
primarily for people with disabilities. These guidelines have been adopted by many
government agencies and guarantee an acceptable level of access to information and
services via websites and applications for people with disabilities. You can read the
following pages to gain a basic understanding of the WCAG requirements:

https://www.w3.org/WAI/standards-guidelines/

The WCAG implementation in Omnis Studio calls on the ARIA specification, which
according to W3.org is “Accessible Rich Internet Applications (ARIA) defines a way
to make Web content and Web applications more accessible to people with disabilities.
It especially helps with dynamic content and advanced user interface controls
developed with [various web technologies],” which includes technologies such as the

JavaScript Client in Omnis Studio.

In practice, this means we have added various ARIA compliant properties to the
controls for JavaScript remote forms which you can use in your web and mobile apps
to support end users with disabilities. These properties will be read automatically when
the screen reader capabilities are enabled in the end user’s browser or mobile device.
(For testing, we have used ChromeVox by Google, but there are many other screen
readers for Chrome and other browsers.)

Accessibility Properties
Most JavaScript controls have a set of basic ARIA and other accessibility properties
which are interpreted by the screen reader in the browser. The ARIA properties in
Omnis map closely to their equivalent ARIA attributes in HTML.

General properties

Several of the JavaScript controls have the following ARIA properties, while some other
controls have additional properties (listed below). These properties are designed to
work in a similar way as their equivalent ARIA attributes in HTML.

❑ $arialabel
the text for the aria label, which is used when a text label is not visible on the form.
If there is a label for the control, use the $arialabelledby property instead

https://www.w3.org/WAI/standards-guidelines/

 Accessibility

 173

❑ $arialabelledby
the name of a control to act as a label for this control; for example, you could enter
the name a label object to link it to the control. A value in $arialabelledby will
override the value in $arialabel

❑ $ariadescribedby
the name of a control used to describe this control: similar to $arialabelledby, but
could be used to provide more information or a longer description about the control

You should note that JavaScript controls now have an $active property which works
alongside $enabled allowing you to make controls active, inactive, enabled, or
disabled, which helps you control accessibility and tab order in your remote forms. See
the JavaScript Components section for information about $active.

Image based controls

You can assign an Alt text value to image-based controls, such as Picture and Activity,
using the $alttext property:

❑ $alttext
a short text to describe the appearance or function of an image, and equivalent to
the “alt” attribute in HTML; this property is relevant for controls that contain an
image or have a significant visual appearance, such as the Picture and Activity

controls.

Page panes and Landmarks

So-called “Landmark Roles” in standard accessibility guidelines allow you to identify
different areas of a form to allow screen readers to describe the structure of the page to
end users. You can define Landmarks in your Omnis JavaScript remote forms using
Page panes and by assigning the appropriate value to a new $landmark property for
each pane: the options for the new property correspond to the same keywords used for
landmarks in the accessibility guidelines (Main, Navigation, Banner).

❑ $landmark
specifies a role to make the page pane an ARIA landmark region, a kLandmark…
constant with kLandmarkNone as the default.

The Landmark options are:

Landmark option Description

kLandmarkMain A “Main” landmark which identifies the primary content of
the remote form

kLandmarkNavigation A “Navigation” landmark which identifies an area
containing navigation type control or list of links used for
navigation

kLandmarkBanner A “Banner” landmark which identifies an area usually at
the top of the form, possibly containing logo, company or
application name and search box

kLandmarkContentinfo A “Contentinfo” landmark which typically identifies
common information at the bottom of a form

kLandmarkComplementary A “Complementary” landmark which many contain
supplementary information or further links, such as a

sidebar

kLandmarkForm A “Form” landmark which identifies an area containing a

number of input controls or other form controls

kLandmarkSearch A “Search” landmark which typically would contain a
Search field and button

kLandmarkNone No landmark definition

What’s New in Omnis Studio 10.0

174

Label controls

You can link a Label control to a specific Edit control, or you can tag a label as one of

the HTML header types, using the following properties:

❑ $labelfor
links a label to a control. If you use this with some controls such as the Edit control,
the linked control will get the focus if the label is clicked. It can be used in addition

to $arialabelledby.

❑ $tagtype
can be used to set a label’s HTML tag type to one of the header types (<h1> etc.)
which would allow the end user to navigate to different sections of a form: the
default value is kJSLabelTypeLabel, which is a standard untagged label, and the
other values include H1 to H6 for the header types.

Control text

If a control has some text assigned (e.g. a button), the screen reader will read out the
text by default, therefore it is not always necessary to assign the ARIA properties to
describe such controls. For example, the text for a Button control will be read by the
screen reader, if no ARIA properties are specified, however the value in $text will be
overridden if you specify $arialabel or $arialabelledby.

Content tips

The Edit control has the $::contenttip property which is a text string which is displayed
in the edit field when it is empty and before the end user has entered any text. This can
be used in addition to the ARIA label properties, to help label the edit controls on your
forms: note it is good practice to add labels to all the edit controls on your form to help
with accessibility, so do not rely solely on content tips to describe edit controls.

Keyboard Accessibility
As well as the ARIA properties, the behavior when using various keys to navigate a
remote form, or inside more complex controls, has been improved. For example, when
the end user presses the Tab key, the focus will jump from one control to another in a
remote (web) form, or for complex items such as a Tab bar, the Tab key will put the
focus inside the control and the arrow keys can be used to move from one element to
another. In addition, the Arrow keys can be used to interact with controls, such as
dropdown menus, while Enter and Spacebar can be used to select options or items.
The Page Up/Down keys can be used to scroll a form or long list which has the focus.

Tabbing Order
The $order property determines the tabbing order for the controls within a remote form;
note this is not a new property but has an impact on accessibility. The value of $order
for each control is assigned automatically as you add controls to the form in design
mode, starting at 1 and increasing by 1 for each control (note the $order values do not
change if you rearrange the controls on the form). You can change the $order value of
a control to change its tab order: when you change the value of one control, the value
of other controls on the form will shuffle automatically.

For increased accessibility in your applications, you should carefully consider the tab
order of the controls in your forms. In general, it is good practice to make the tab order
run consecutively, that is, from one control to the next in a logical order: this could be
from left to right starting at the top of the form, but the exact order may depend on the
specific functions of your app. The tabbing order of the controls in the form is also used
by the screen reader to “read out” or describe the contents of the form, so it’s important
how you specify the tabbing order of the fields in your form. Once you tab into a
container such as a page pane, the tab order takes you through all of the fields in the
container, before tabbing out of the container.

 JavaScript Remote Forms

 175

The $startfield property specifies which field in a remote form will get the focus when
the form is opened, overriding the control with its $order property set to 1; $startfield
takes the field number as specified in the $order property of the control. Note this is not
a new property but has an impact on accessibility, insofar as $startfield may not be the
first field on the form, thereby going against most accessibility practice.

Form Example

With the ARIA labels specified and the correct tabbing order defined, the end user can
navigate the controls on a form from the keyboard, and, in addition, the screen reader
can describe each control or area of the form page in turn.

Consider the following JavaScript remote form. In the first image, as the end user tabs
to the First Name edit field, the field border will highlight, the screen reader will say
aloud: “First name, Edit text”, and if there is a value in the field, as in this case, it will
read that as well: “First name, Peter, Edit text”.

Using the Tab key, the end user can move from one control or area of the form to
another. Successive tab presses will enter the Tab bar at the top of the form, then the
Right and Left Arrow keys can be used to move along the Tab bar, and the Return key
can be used to select a tab. Once the tab is selected, the screen reader will describe
the item selected: “Careers / Education Experience, Tab selected, 2 of 4”.

JavaScript Remote Forms
Client Preferences
The row variable passed to the “savepreference” and “loadpreference” client
commands now allow a third parameter, the “storage type”, which allows temporary,
session, or local storage options. This allows you to store text values in the client
browser, either temporarily or persistently in the browser using JavaScript
sessionStorage or localStorage. Storage type is of type character and can have the
following values:

❑ "temp"
temporary storage stored within an instance of this connection, will be cleared on
page close or reload

What’s New in Omnis Studio 10.0

176

❑ "session"
JavaScript sessionStorage cleared when page session ends, survives page reloads
and restores

❑ "local" (the default if no value supplied)
JavaScript localStorage has no expiration time and survives page closures. When

used with the wrappers the values will be shared between online and offline mode

For example:
Do lPrefRow.$define(lPrefName,lPrefValue,lStorageType)

Do lPrefRow.$assigncols('omnis_pref1',iPref1,"session")

Do $cinst.$clientcommand("savepreference",lPrefRow)

Do lPrefRow.$assigncols('omnis_pref1','iPref1',"session")

Do $cinst.$clientcommand("loadpreference",lPrefRow)

Sending Data to the Form construct
A new mechanism has been added to the Omnis JavaScript object to allow you to send
data or content to the $constuct method of a remote form. The “omnisobject” <div> in a
remote form can now have two special attributes:

❑ data-localstorage
A comma-separated list of preference names saved to localStorage (e.g. using the
'savepreference' $clientcommand), whose values should be sent to the $construct
row in the form. They can be named "localpref_<prefName>"

❑ data-window
A comma-separated list of members of the JavaScript 'window' object, whose
values to send to the $construct row in the form. You can use dot notation to
access nested children. The columns returned to Omnis will be named
"window_<memberName_childName_...>". Column names have a max length of
255 characters

For example, the following parameters added to the omnisobject (shown in bold) will
send the pixel ratio of the current device, plus the myPref1 and myOtherPref
parameters from local storage to the $construct of the remote form:
<div id="omnisobject1" style="position:absolute;top:0;left:0" data-

webserverurl="" data-omnisserverandport="" data-omnislibrary="" data-

omnisclass="" data-dss="" data-param1="" data-param2="" data-

commstimeout="0" data-window="document.URL,devicePixelRatio" data-

localstorage="myPref1,myOtherPref"></div>

Class Cache Logging
You can now log and control the caching of classes in the JavaScript Client. For most
applications, you should not need to use the cache logging and control, since the
default behavior of caching all class data to localStorage provides the best
performance, and is adequate for most remote forms and data.

The new options are only provided if you find your application reaches the limits of
localStorage (e.g. with a very large application) and you need to examine and control
the contents of the cache.

To enable the cache logger, the omnisobject <div> can now have two optional
attributes:

❑ "data-logcaching"
If present, data will be collected on the caching of class data, etc in localStorage.
This can be accessed by querying the JavaScript object
jOmnis.omnisInsts[0].cacheLogger. It has methods getCacheLog() and

 JavaScript Remote Forms

 177

printLocalStorage() to provide useful information in the browser console. If given

the value "verbose", it will print caching messages to the console as they occur.

❑ "data-onlycacheclasses"
If present, cache only the class data for the specified classes in localStorage.
A comma-separated list of Remote Form classes whose data should be cached.
In the format "<library name>.<form name>". E.g: "myLib.jsForm1,myLib.jsForm2"
#STYLES is handled separately, per-library. To enable caching of styles, add an
entry "<library name>.#STYLES"

These parameters will need to be added to or enabled in the HTML page containing
the initial remote form for your web or mobile application (they could also be added to
enabled in the jsctempl.htm file, although the cache logging does not need to be
enabled for most applications).

Form Layout Events
The event handling when the layout changes in a JavaScript remote form has changed,
with the addition of a new orientation parameter in evScreenOrientationChange, and a
change in behavior for evLayoutChanged.

All form layout types now trigger evScreenOrientationChange when their layout
changes; this applies to kLayoutTypeResponsive, kLayoutTypeScreen, and
kLayoutTypeSingle type forms. The event parameter pOrientation has been added to
the evScreenOrientationChange event which will have a value of kOrientPortrait or
kOrientLandscape depending on the resulting orientation of the form.

Only remote forms of type kLayoutTypeScreen trigger the evLayoutChanged event

when their layout changes.

Layout Breakpoints
New remote forms now have only two layout breakpoints by default. When you create a
new remote form in Studio 10, it will contain two initial layout breakpoints: 320 and 768.
In previous versions, a layout breakpoint at 1024 was added to new forms but this has
been removed. You can still add your own layout breakpoints, or change or delete the
default values.

The $initiallayoutbreakpoints library preference has also been amended and the
corresponding setting in the config.json file.

HTML template
A new property $htmltemplate has been added to remote task classes, allowing you to
specify a different HTML template to use to test a remote form, rather than using the
default template ‘jsctempl.htm’. For example, you may want to create a template with
your own set of parameters in the “omnisobject” <div>, but retain the default template.

The new $htmltemplate property specifies the name of a template file (which must exist
in the html folder) to use when testing any remote forms that use this remote task as its
design task. If $htmltemplate is empty (the default), Omnis uses the default template
‘jsctempl.htm’ located in the html folder, which matches the behavior in previous

versions.

PDF Printing
You can specify an alternative folder to place PDFs created in the JavaScript Client,
rather than using the default “omnispdf” folder. There is a new item called
"omnispdfFolder" in the "pdf" section of the Omnis configuration file (config.json) that
allows you to specify the path of a folder to receive PDFs, overriding the default
location. The new item defaults to empty, which means Omnis will use the current
omnispdf folder. The folder specified in "omnispdfFolder" must already exist, otherwise
Omnis reverts to the default omnispdf folder.

What’s New in Omnis Studio 10.0

178

Remote Form Padding
A new property $layoutpadding has been added to responsive remote forms to allow
you to set the amount of padding under the bottom-most control on the form. In
previous versions, the bottom edge of the form was set to 2 pixels under the bottom-
most control.

The range for $layoutpadding is 0 to 512 which is added to the bottom-most coordinate
of all controls, to generate the minimum layout height when $layoutminheight is zero.
When available client height is larger than this, the controls on the form can float. A
value is stored for each breakpoint.

When you create a new remote form class (or convert an existing remote form),
$layoutpadding is set to 2 by default for each breakpoint. The default value of
$layoutpadding is specified in a new option called "responsiveLayoutPadding" in the
"defaults" section of the Omnis configuraration file (config.json), which is set to a
default value of 2.

When a remote form is accessed for the first time, e.g. in a converted library, the value
of $layoutpadding is initialised to the default padding (unless the remote form is read-
only, in which case the default value is used, but not written to the class).

Message Dialogs
Header Styles

The appearance of various message boxes and dialogs has been improved including
message dialogs created using $showmessage() or $clientcommand() and the
commands ‘yesnomessage’, ‘noyesmessage’, and ‘okcancelmessage’.

Title bars now have a larger touch area to make it easier to drag dialogs on touch
devices. Title bar buttons are now larger, including larger high-resolution icons and
better hover/focus characteristics. When hovering over a draggable area with the
pointer, it changes to a grab pointer, and then to a grabbing pointer when the pointer
button is held down to drag.

Dialog buttons have been based on the material design UI scheme which work from
right to left instead of left to right and the primary button has a different color to the
other buttons.

CSS classes have been added to dialog Headers so that different dialog types can
have individual styling (errorheader, query header, etc.): the default values for these
are in a new CSS file omn_dlg.css. The header and body styling of the dialogs can be
changed in omn_dlg.css under .omnis-wf-title.typeheader and .typebody.

Javamessage Icons

The message dialog displayed using the ‘javamessage’ command (using
$clientcommand) now contains a standard icon from the material design set; this

specific change only applies to the javamessage, no other dialog boxes.

Types 'error', 'warning', 'success', 'prompt' and 'query' all contain an icon specific to that
type, while 'message' does not use an icon. The images for the icons can be changed
in omn_dlg.css under the .typeicon classes.

Managing Server Timeouts
You can now better manage what is displayed in the end user’s browser when the
Omnis Server responds with a Server error or Disconnected message. You can create
a client-executed remote form method named $ondisconnected which will be called
when there is an error on the server or the client is disconnected.

The method has a single parameter which provides the error text. This is only
populated if it was triggered by a server error, rather than a disconnect due to Remote
Task timeout etc. If you wish to prevent the default behavior, you must return kTrue
from this method.

 JavaScript Components

 179

The form which initiated the server request will be queried for the method first. If it is

not found, or it does not return kTrue, any parent forms (if it is a subform) will be tried.

Closing Browser Windows
A new method $closeurl() has been added that allows you to close a browser window
that was previously opened by the $showurl() method. The $closeurl() method takes a
single parameter, a string identifier to the window, returned in the fourth parameter of

the $showurl() method.

JavaScript Components
There are some new JavaScript controls, including a Toolbar control and an iCalendar
external object (which can be used in remote forms and window classes), plus some of
the existing JavaScript controls have been enhanced, including the Segmented
Control, Progress bar Control, File Control (for uploading and downloading files) and
the Data Grid control.

Toolbar Control
The Toolbar Control is a new JavaScript Control that can contain a number of buttons
which the end user can click on or tap to perform an action. Each toolbar button can be
assigned an icon and text, as well as a different action. When a button is clicked, the
item number is reported to the event handling method allowing you to run the
appropriate code.
A toolbar can have a side menu by setting $sidemenu to true and adding a list variable
name to $dataname containing the menu items. Items are added to an overflow menu
automatically (shown by three vertical dots) if they do not fit on the toolbar, or items can
be forced to appear on the overflow menu. The toolbar is displayed horizontally, by
default, but can also be displayed vertically. You can use edgefloat properties to ‘stick’
the toolbar to the top or side of the remote form.

The following example Toolbar has four items or buttons defined, each with an icon
and text, a main title ‘Toolbar’ on the left, and an overflow menu on the right.

Items can be forced to always appear in the overflow, regardless of the width of the
main toolbar, shown on the right of the toolbar by the three vertical dots, and shown
dropped here:

As the browser window is resized, or the remote form (the app) is displayed on a
mobile device, the main toolbar width will shrink, and the button items are added to the

overflow menu automatically, as shown:

What’s New in Omnis Studio 10.0

180

The following image shows the same Toolbar with the side menu added and in the
dropped state:

There is an example app in the Hub to show how you can use the Toolbar control.

Properties

The custom properties for the Toolbar Control are described below. The ‘Item’ tab
contains item specific properties that apply to the $currentitem.

Property Description

$itemcount The number of toolbar items/buttons

$currentitem Item specific properties are assigned to the current item

$moveitem Allows you to move an item in design mode; the current item
moves to the position specified by the number entered

$itemiconid The icon for the current item (item specific property),
$showitemicons needs to be enabled to display icons; note that

icons are not displayed on overflow items

$itemtext The text for current item (item specific property); note

$showitemtext needs to be enabled to display text

$itemoverflow Force the item to be appear in the overflow menu (item specific

property)

$sidemenu Add a side menu to the toolbar. The $dataname must be a list

containing the menu data

$dataname Name of a list variable containing the menu data, to display a

menu when $sidemenu is set to true

$verticaltoolbar Display the toolbar in a vertical orientation

$menudirection A kJSToolbarMenuDirection… constant which sets the direction
the menu should open. Different values are available depending

 JavaScript Components

 181

on the $verticaltoolbar property: Down or Up for horizontal
toolbars, Right or Left for vertical toolbars

$toolbartitle The optional title to display on the toolbar; leave this blank for no
title

$titlefontsize The font size applied to the toolbar title

$itemwidth The width of items on the toolbar; without a value items have a

variable width and are forced to fit the length of the toolbar

$displaystyle A kJSToolbarStyle... constant determining the position of the
icon text relative to the icon: either Above, Below, Left of, or
Right of the icon

$showitemicons If true, any item with an $itemiconid will display an icon on the
toolbar; note that icons are not displayed on overflow items

$showitemtext If true, any item with $itemtext will display text on the toolbar;
when true, $showtooltips is disabled

$showtooltips Show tooltips on toolbar items; $showitemtext must be set to
false

$showdividers If true, dividers will be shown between toolbar items

$dividercolor The color of the dividers between items if $showdividers is true

$iconcolor The color of standard icons such as the hamburger icon

$sidemenucolor The background color of the side menu

$overflowcolor The background color of the overflow menu

$toolbaractivecolor The color of toolbar items when clicked

$toolbarhovercolor Hover color for toolbar items

$sidemenuhovercolor Hover color for side menu items

$overflowhovercolor Hover color for overflow items

$selecteditem The number of the selected item

$showselecteditem If true, the item will have its background color set to
$selectedcolor and its text colour set to $selectedtextcolor.

$selectedcolor The background color of the selected item

$selectedtextcolor The text color of the selected item

Clicking on a toolbar item will make that item selected, and $selecteditem is set to the
selected item number. If $showselecteditem is true, the item will have its background
color set to $selectedcolor and its text color set to $selectedtextcolor.

What’s New in Omnis Studio 10.0

182

Events

The Toolbar reports two events: evClick reports the toolbar item that was clicked, with
pClickedItem returning the item number; and evNavigationClick reports true if an item
on the side menu was clicked, with the group number reported in pClickedMenuGroup
(zero if the data is ungrouped) and the item number in pClickedMenuItem. You can
write event handling code in the $event for the toolbar to trap these events and branch

according to the value of pClickedItem or pClickedMenuItem.

Defining the $dataname list

To enable the side menu, you need to set $sidemenu to kTrue and specify a list
variable name in $dataname containing the contents of the menu. The $dataname can
generate either a grouped or an ungrouped menu.

Ungrouped list columns with each row representing an item:

❑ Text (Character): The text of the menu item.

❑ IconPath (Character): A URL of an image to display. The image will be scaled to fit.

Grouped list columns with each row representing a group:

❑ SubList (List): A list with columns matching the ungrouped list above. Contains data
for the group.

❑ GroupName (Character): The text displayed on the group header.

❑ Fixed (Boolean): Optional column. If true, the group is always expanded. False by

default.

❑ Collapsed (Boolean): Optional column. If true, the group is collapsed by default.
False by default.

iCalendar External Component
iCalendar is a new, non-visual External Component that you can use in your Remote
Forms (or window classes) to load and manage calendar events. iCalendar allows you
to read, write and modify objects based on the standard iCalendar format, which is
supported by many third-party calendar products.

The iCalendar model is based on four object types:

❑ Component: A group containing Properties which represent, for example, an
event. Components can contain other Components (sub-components).

❑ Property: Used to communicate information about a Component, such as a
description or a location.

❑ Value: Properties have a value associated with them. For example, a DTSTART
Property will have a date or datetime value.

❑ Parameter: A modifier for a Property. Properties may have more than one
Parameter (or none).

There are two types of object in the Omnis iCalendar external component:

❑ Document: Represents the entire Document and its children.

❑ Component: Used to access and manipulate iCalendar Components and their
associated Properties and Parameters.

To access the iCalendar objects & methods, you need to create an instance variable in
your remote form (or window class), choose Object as its Type, under Subtype drop
down the Select object dialog, open the ‘iCalendar Objects’ group and select
‘Document’ object.

Working with iCalendar files

iCalendar Documents can be initialised with character data, or built up with the Omnis
iCalendar methods.

To load an iCalendar file into a Document object, use FileOps to read in the character
data. Then use $initwithdata() to initialise the document.

 JavaScript Components

 183

 Do FileOps.$getfilename(lPath,"Select ics file","*.ics")

 Do lFileOps.$openfile(lPath,kTrue)

 Do lFileOps.$readcharacter(kUniTypeUTF8,iCalText)

 Do lFileOps.$closefile()

 Do lDoc.$initwithdata(iCalText)

To output the character data, use $getdata() on the Document or a single Component.

To save the data into a file, use FileOps.
 Calculate lDocText as iNewDoc.$getdata()

 Do FileOps.$putfilename(lPath,,"*.ics")

 Do lFileOps.$createfile(lPath)

 Do lFileOps.$openfile(lPath)

 Do lFileOps.$writecharacter(kUniTypeUTF8,lDocText)

 Do lFileOps.$closefile()

Updating sub-components

The functions $getcomponent() and $getsubcomponent() return a copy of a
Component. Therefore, modifying the returned Component will not affect the parent
(the Component or Document that the method was called on). In order to update the
parent, Component copy will need to be saved back to the parent with

$replacerootcomponent() or $replacesubcomponent().

Custom Properties

As well as the standard Property types, custom Properties can be added to
Components. These must be prefixed with “X-”, e.g. “X-PROPERTY”. By default, the
data type of a custom Property is character. When adding a Property to a Component
with $addproperty(), the optional iDataType Parameter can be used to override the
default data type. Doing so will set the “VALUE” Parameter to the data type associated
with the constant. The data type cannot be changed after it has been created.

Custom Parameters

Like custom Properties, custom Parameters can be applied to Properties. Similarly,

they must also have “X-” as a prefix.

Error Properties

When a Document is initialised with $initwithdata(), the character data is parsed. If
there are any syntactic or semantic errors in the data, such as a misspelt Property
name or a Property without a value, an X-LIC- error Property will be inserted. For

example, the following error is caused by misspelling the ATTENDEE Property:

X-LIC-ERROR;X-LIC-ERRORTYPE=PROPERTY-PARSE-ERROR:Parse error in
property name: ATENDEE

Special Values

These values contain multiple parts and are therefore represented as rows. The static
$createrow() helper method can be used to build these rows, which can be used to
create a new Property or update a value.

Recur

The “RECUR” value type in the iCalendar model denotes a recurring event. It is
commonly used with the “RRULE” Property. Its value may contain several parts,
separated by semicolons. The parts contain key value pairs separated by the equals
sign. The example shows a Recurrence Rule property.

RRULE:FREQ=MONTHLY;BYMONTHDAY=1;UNTIL=19980901T210000Z

A Component’s $propertylist will store an RRULE Property as a rows containing
columns relating to each keyword. To create an RRULE Property with $addproperty(),
the vValue parameter can take either a character or row argument. To create a
recurrence type row, use $createrow(kICalendarRowTypeRecur).

What’s New in Omnis Studio 10.0

184

Duration

The “DURATION” value type is represented in a component’s $propertylist as a row.
The columns are: IS_NEGATIVE, DAYS, WEEKS, HOURS, MINUTES and
SECONDS. To add a Property with a duration type, a row containing these column
names can be used. The column values are all Integers, with the exception of
IS_NEGATIVE, which is a Boolean. Alternatively, a string can passed. For example,
P15DT5H0M20S denotes a duration of 15 days, 5 hours, and 20 seconds. See the
RFC 5545 iCalendar specification for details on this format
(https://tools.ietf.org/html/rfc5545#section-3.3.6).

Period

“PERIOD” value types have two parts: The first is the start time (date time). The
second can either be the end of the period (date time), or a duration. Period is the
default value type of the Free/Busy Property. In the $propertylist, period values are
displayed as a row containing a START date time and either a DURATION or an END
date time.

19970101T180000Z/19970102T070000Z date time “/” date time (Explicit)

19970101T180000Z/PT5H30M date time “/” duration (Start)

Geo

“GEO” Properties hold geographic coordinates, represented as two floats separated by
a semicolon. The values are latitude and longitude respectively, e.g. 37.386013;-
122.082932.

In the $propertylist of a Component, they are displayed as a row containing a LAT and
a LONG column with float values.

Methods & Properties

Static Methods

$createcomponent()

OmnisICalendar.$createcomponent(iType)

Creates a new iCalendar Component object using one of the kICalendarComponent...
constants. Returns an iCalendar component object.

❑ iType: A kICalendarComponent... constant to specify the Component type.

$createrow()

OmnisICalendar.$createrow(iType)

Returns a row which can be used to add or update certain Properties. iType can be
one of the kICalendarRowType... constants.

❑ iType: A kICalendarRowType... constant to specify the type of row.

Document Object

Methods

$initwithdata()

$initwithdata(cData)

Initializes the object with the Character contents of an iCalendar file. Returns true if
successful.

❑ cData: The character data containing the contents of an iCalendar file.

$getdata()

$getdata() - no parameters

Returns character data representing the Document that can be saved as an iCalendar
file.

$getcomponent()

$getcomponent(iComponentId)

Returns a copy of the root Component object with the specified ID.

https://tools.ietf.org/html/rfc5545#section-3.3.6

 JavaScript Components

 185

❑ iComponentId: The ID of the root Component to find.

$addrootcomponent()

$addrootcomponent(oComponent)

Adds a Component to the root of the Document. Returns the ID of the new Component.

❑ oComponent: The Component to be added to the root.

$deleterootcomponent()

$deleterootcomponent(iComponentId)

Removes the Component with the specified ID from the root. Returns true if the
Component was deleted.

❑ iComponentId: The ID of the Component to delete.

$replacerootcomponent()

$replacerootcomponent(iComponentId, oComponent)

Replaces the Component at the specified ID with oComponent. Returns true if

successful.

❑ iComponentId: The ID of the Component to replace.

❑ oComponent: The new Component.

Properties

$componentlist

A list of root-level Component info for the Document. The columns for this list are: ID,
Type and TypeName.

Component Object

Methods

$getdata()

$getdata() - no parameters

Returns character data representing the Component and its children, that can be saved

as an iCalendar file.

$isvalidcalendar()

$isvalidcalendar() - no parameters

Returns true if the VCALENDAR Component meets the RFC 5546 iCalendar

specification standards.

$getsubcomponent()

$getsubcomponent(iComponentId)

Returns a copy of the sub-component object with the specified ID.

❑ iComponentId: The ID of the sub-component to find.

$addsubcomponent()

$addsubcomponent(oComponent)

Adds a sub-component to the Component. Returns the ID of the new Component.

❑ oComponent: The sub-component to be added to the Component.

$deletesubcomponent()

$deletesubcomponent(iComponentId)

Removes the sub-component with the specified ID from the component. Returns true if

the sub-component was deleted.

❑ iComponentId: The ID of the Component to delete.

$replacesubcomponent()

$replacesubcomponent(iComponentId, oComponent)

Replaces the Component at the specified ID with oComponent. Returns true if
successful.

What’s New in Omnis Studio 10.0

186

❑ iComponentId: The ID of the Component to replace.

❑ oComponent: The new Component.

$addproperty()

$addproperty(cName, vValue, [wParameters, iDataType])

Adds a new Property to the Component. Returns the Property ID.

❑ cName: The name of the Property. Must be a valid Property type.

❑ vValue: The value to assign to the Property. The type can be Character, Integer,
Date Time, Float, Boolean or Row.

❑ wParameters: A row of Parameters to add to the Property.

❑ iDataType: A kICalendarDataType... constant. Sets the 'VALUE' Parameter which
overrides the default data type for the Property. Can be used to specify the type of
a custom Property.

$deleteproperty()

$deleteproperty(iPropertyId)

Delete the Property with the specified ID. Returns true if the Property was deleted.

❑ iPropertyId: The ID of the Property to delete.

$setparameter()

$setparameter(iPropertyId, cName, cValue)

Sets the Parameter of the Property. If there is an existing Parameter with the same
name, it will be overwritten. Returns true if successful.

❑ iPropertyId: The ID of the Property associated with the Parameter.

❑ cName: The name of the Parameter to set.

❑ cValue: The value to set the Parameter to.

$updateproperty()

$updateproperty(iPropertyId, vValue, [wParameters])

Updates the Property with the specified ID. Providing Parameters will overwrite any
existing ones. Returns true if successful.

❑ iPropertyId: The ID of the Property to update.

❑ vValue: The new value to assign to the Property. The type can be Character,

Integer, Date Time, Float, Boolean or Row.

❑ wParameters: A row of Parameters to add to the Property.

$deleteparameter()

$deleteparameter(iPropertyId, cName)

Removes the Parameter with the name cParamName from the Property. Returns true if
the Parameter was deleted.

❑ iPropertyId: The ID of the Property associated with the Parameter.

❑ cName: The name of the Parameter to delete.

Properties

$componentlist

A list of sub-component info for the Component. The columns for this list are: ID, Type
and TypeName.

$propertylist

A list of iCalendar Properties held by this Component. The columns for this list are: ID,
PropertyName and PropertyValue. The PropertyValue column contains a row for each
Property. Each row has a “_VALUE” column containing the Property value (the type of

this depends on the Property), and columns for any Parameters that the Property has.

 JavaScript Components

 187

$typename

The type name of the Component.

$typenumber

The type number of the Component.

Edit Control
Shortcut Keys

Various shortcut keys have been added to Edit controls to allow you to select text and
move the insertion point within a standard JavaScript Edit Control (the new shortcuts
also apply to Window class Entry fields).

The shortcut keys are stored in a new Omnis preference $keys which can be edited in
the Property Manager. The shortcut keys for Edit controls are stored in a new
configuration file called ‘keys.json’ and located in the Studio folder (this is the same file
containing the new shortcuts for the Method Editor). The file is created the first time
you edit the shortcuts in the Property Manager and click OK.

Shortcut key Action

Alt+End End of Text Alternative

Alt+Home Start of Text Alternative

Ctrl+Alt+DownArrow Scroll Down

Ctrl+Alt+LeftArrow Scroll Left

Ctrl+Alt+RightArrow Scroll Right

Ctrl+Alt+UpArrow Scroll Up

Ctrl+DownArrow Paragraph Down

Ctrl+End End of Text

Ctrl+Home Start of Text

Ctrl+LeftArrow Backwards Word

Ctrl+RightArrow Forwards Word

Ctrl+UpArrow Paragraph Up

End End of Line

Home Start of Line

PageDown Page Down

PageUp Page Up

Content Selection

A new method $setselection has been added to the Edit control to allow you to select
a range of characters within the control.

❑ $setselection(iFirstSel[,iLastsel]))
Sets the focus on and selection range of the content in the Edit control. If iLastSel is

omitted selection will occur to the end of the edit field. Returns the selected text.

$setselection has two parameters, both Integer, iFirstSel and iLastSel to set position of
the characters to be selected within the edit control. iLastSel selects up to, but not
including, the character specified, and if omitted the content in the edit field is selected

to the end. The method returns the content selected.

What’s New in Omnis Studio 10.0

188

Horizontal Padding

The property $horzpadding has been added to the Edit control to allow you to add
extra horizontal padding, in pixels, inside the control; when applied this property adds
padding on the left and right of the text within the edit control.

Multiline Edit Scrolling

Text wrapping for the JavaScript Multiline Edit field is now prevented if the $horzscroll
property is enabled (kTrue). However, if $autoscroll is true, then text wrapping does

occur (since $autoscroll is on by default).

Segmented Control
A number of properties have been added to the Segmented Control to allow you to
control its appearance, such as the ability to add space between the segments
(buttons) or to add rounded corners.

Segment size and spacing

The following new properties control the segment size, spacing and appearance:
$segmentspacing, $segmentwidth, $segmenteffect, $segmentbordercolor and
$segmentborderradius.

❑ $segmentspacing
the space between the segments in pixels. The behavior can be affected by
$segmentwidth (see below). If zero, dividers are drawn between segments.
Otherwise borders are drawn around the segments.

❑ $segmentwidth
The width applied to all the segments in pixels. By default, this is zero, in which
case the width of the segments is determined by the total width of the control and
$segmentspacing. If this value is small enough, the segments will be centered in
the control.

If the $segmentwidth and the $segmentspacing are set such that the segments extend
beyond the width of the control, the overflowing content will be scrollable. However, if
$segmentwidth is zero (the default), the segments will always fit inside the container.

In the extreme case where $segmentspacing is very high, as long as $segmentwidth is
zero, the spacing will be limited to prevent the segments becoming too small or the
content overflowing.

❑ $segmenteffect
Determines whether borders / dividers are applied to segments, either

kBorderNone or kBorderPlain

❑ $segmentbordercolor
The colour that applies to borders / dividers of segments.

❑ $segmentborderradius
Single value border radius that applies to segments. If $segmentspacing is zero,
this applies to only the outer edges of the outer segments. Otherwise it applies to
all segments.

Hiding Disabled Segments

You can set $segmentenabled for a segment to false to disable it. The new property

$hidedisabledsegments allows you to hide any segments that have been disabled.

Moving Segments in Design mode

There is a new design-time property $movesegment that lets you move a segment: you
need to set it to a number corresponding to the new position (the property works in the
same way as the Data Grid's $movecolumn property).

 JavaScript Components

 189

Progress Bar Control
The Progress Bar control has some new properties to improve the appearance of the
progress bar on all platforms: $usesystemappearance, $secondarycolor and
$progressanimation.

❑ $usesystemappearance
(boolean, true by default) If true, the progress control uses the <progress> HTML5
element (as long as it’s supported by the browser).
If false, the progress control is built with two <div> elements

❑ $secondarycolor
Sets the colour of the stripes of the progress bar. Only applies when

$usesystemappearance is false.

❑ $progressanimation
(boolean, true by default) Animates the progress bar. Only applies when
$usesystemappearance is false.

File Control
The File control has had a number of enhancements to improve its usability and
appearance for uploading and downloading files in the JavaScript Client.

Uploading Multiple Files

The File control now allows multiple files to be selected for uploading by setting
$allowmultiple to kTrue. It is not supported by some browsers, just like

$maxfileuploadsize (IE9 and below, Opera).

The properties $maxbatchuploadsize and $maxbatchuploadsizeerrortext have been
added to work similarly to $maxfileuploadsize to impose a limit of the total amount of
data to be uploaded. This works independently of $maxfileuploadsize so you can
impose a limit on single or multiple file uploads. In addition,
$uploadedprogresstextbatch has been added to show the progress of the batch of files,
and works similarly to $uploadprogresstext.

Error messages shown when file sizes are exceeded, for single or batches of files, now
give the user feedback on what the size limits are and lists the offending files
exceeding the limit.

The UI for the File control has also been improved to provide better formatted
information. On single upload dialogs the file name is displayed above the progress
bar, to the left, the percentage is shown above to the right, and file upload size
information shown below as before. Multiple file upload dialogs display the same
information for each single file, while another progress bar shows progress through the
batch of files, including how many files have uploaded out of the total.

File sizes displayed to the user are now in a more readable unit so when 1000 bytes is
exceeded it changes to kB, 1000 kB changes to MB and 1000 MB changes to GB.

Upload File Type

The File control has a new property $uploadtypes which allows you to filter the file
types that can be uploaded. The property accepts a comma-separated list of file
extensions or MIME types, for example, the string '.png, .jpg, .jpeg' would allow PNG or
JPG files, or 'image/*' to allow any image files.

Localization

All the text and labels in the File control can now be translated via the jOmnisStrings
object in the JavaScript client. See the main Localization section for more info.

Pie/Bar Chart
You can specify your own colors for Pie and Bar Charts: in previous versions you had
no control over the colors displayed in charts. There is a new runtime-only property

What’s New in Omnis Studio 10.0

190

$colorlist for Pie and Bar charts that allows you to specify a list of colors to use for the

segments or bars in the chart.

You need to create a list of strings representing CSS colors and assign the list to the
$colorlist property, for example:
Do iColorList.$define(iColor)

Do iColorList.$add("#CE3D3D")

Do iColorList.$add("rgb(81, 206, 61)")

Do iColorList.$add("hsl(230, 60%, 52%)")

Do iColorList.$add("Gold")

Do $cinst.$objs.PieChart.$colorlist.$assign(iColorList)

The accepted color formats are: Hex Code RGB, Decimal Code RGB, HSL, or Color

Name, and the formats can be mixed throughout the list as in the example above.

If there are not enough colors available in the color list for the number of segments in
the chart, then Omnis will repeat the colors in $colorlist. Therefore, if you want to avoid
repeating colors, create a color list containing more colors than you will generally need

to cater to the number of data points in your chart.

Data Grid
Validating data

Data grids have a new client-executed method, $validate, which allows you to validate
the data entered into any cell in the grid. If present, the method is called when an edit is
made to a grid cell, with the parameters pRow, pCol, pNewValue being passed to the
method. The method returns true to indicate that the change is valid, depending on the
validation code you add to the method, otherwise the value in the cell will revert to the
previous value.

Copying data

Data Grids (and standard list controls) now allow the end user to copy data from
selected rows. Data grids return the copied rows as tab-separated values. You can add
a client executed method named "$clipboardcopy" to the control to handle the clipboard
content. The method can return character data or a list. If it is a list, column 1 must be
the MIME type and column 2 must be the content.

For example:
$clipboardcopy client method

Do lList.$define(lMime,lContent)

Do lList.$add("text/plain","Copy this as plain text")

Do lList.$add("text/html","Copy this as <u>HTML</u> instead")

Quit method lList

evCellValueChanged event

There is a new event for Data Grids, evCellValueChanged, to report when the user has
changed the value of a cell, while there has been a small change to the existing
evCellChanged event.

❑ evCellValueChanged (pHorzCell, pVertCell)
sent when the user has changed the value of a cell.
pHorzCell - The column number of the cell that has changed.
pVertCell - The row number of the cell that has changed.

❑ evCellChanged (pHorzCell, pVertCell)
sent when the current cell has changed, e.g. when navigating between cells with
the arrow keys or clicking a cell that isn't the current cell.
pHorzCell - The column number of the new current cell.
pVertCell - The row number of the new current cell.

 JavaScript Components

 191

Fixed Columns

Data grids have a new property $frozencolumns which allows you to fix or “freeze” a
number of columns to the left of the grid, so they do not scroll when the other columns
in the grid are scrolled horizontally. The property takes a number value from 1 upwards
corresponding to the first column on the left of the grid. For example, you could specify
a value of 1 to create row headings that are fixed to the left of the grid.

Color Picker

Data grid columns have a new column type kJSDataGridModeColorPicker which
means the column will display a color picker allowing the end user to select a color. A
numeric color value is returned from the picker, or a color functions can be used to set
the color of the column, such as truergb(kDarkGreen), or rgb(255,0,0).

For example, to set the colors for the first 3 lines in the third column, use the code:
 Do iList.$add('Bag','21/02/12',truergb(kDarkGreen),'19.00',kTrue,'')

 Do iList.$add('Balls','20/02/12',rgb(255,0,0),'4.55',kFalse,'Delivery next

week')

 Do iList.$add('Clubs','20/12/11',rgb(0,0,255),'299.99',kTrue,'')

You can specify the text for the OK and Cancel buttons on the color picker using
$colorpickeroktext and $colorpickercanceltext.

An entry field has been added to the color picker which accepts colors in the hex (the
default), rgb or color name formats. Localisable strings have been added for the color
entry field for the aria-label and aria-describedby accessibility properties,
"ctl_dgrd_color_input" and "ctl_dgrd_color_input_desc" respectively. In addition, end
users should be able to navigate the color picker from the keyboard without the picker
losing the focus.

Number Columns

Data grid columns with type Number have a new property $columnzeroshownempty
which specifies that values of zero are shown empty rather than displaying a 0 digit.

Hiding a column

Data Grids have a new property $columnhidden which allows you to hide the specified

column at runtime. The default is false, meaning the column is visible.

Rich Text Editor
The Rich Text Editor control now allows you to print the text contents of the control.
There is a new print button on the editor's toolbar, which when clicked opens a window
for printing the contents of the editor. There is also new method $printcontents in the

control which you can use to print the contents.

What’s New in Omnis Studio 10.0

192

❑ $printcontents(cTitle)
Opens a new window to print the editor's current contents. cTitle is the title of the
document to print.

You enable the new print button by setting $removedtoolbaritems to kJSRichTextPrint.
In addition, there is a new Omnis string table item with ID: rt_print which you can edit to

change the tooltip of the button.

Lists
Changing Current Line from the Keyboard

A new property, $keyboardchangesline, has been added to JavaScript List controls,
including standard Lists, Native lists, Tree lists, and Data grids.

When set to true, navigating the list with the keyboard also sets the current line, so
when the list is not in a multiple select state, there is not a separate focused line. The
evClick event is fired when the current line changes.

When set to false, navigating the list with the keyboard always uses a focus line and
the user has to manually select a current line with the Space or Enter key, at which

point evClick is fired.

Subforms
Error text

The $errortext property is only supported for subform controls when they are not
scrollable, i.e. when $vertscroll & $horzscroll are both kFalse and the subform class is
not responsive.

Subform Sets
Title Bar Appearance

The appearance of the title bar for subforms in a subform set has been improved.
Specifically, the close, minimize and expand buttons have been replaced with larger
icons and the hover behavior has been improved.

Positioning

When a subform is added to a Subform Set (using the subformset_add client
command), and formLeft or formTop parameters are set to kSFScenter, the subform
will be displayed in the center of the current viewport or the current form, whichever is
the smaller of the two: note that horizontal and vertical centring work independently of
each other. This improves on the previous behavior of forcing the browser to scroll to
the center of the main form, to center the new subform, which could be a long way from
the current view on large forms.

Nav Bar
There is a new property, $disableanimation, added to the JavaScript Nav Bar control.
The new property was added to fix a problem when using the built-in VoiceOver screen
reader on an iPad in conjunction with a Nav Bar linked to Page Pane: the problem is
avoided by disabling the animation effect on the Nav Bar.

The $disableanimation disables the animation when moving between pages. This
property can only be set in design mode (not at runtime using the notation).

HTML Object
The HTML Object has a new property $wraptext to allow the content in the control to
wrap.

❑ $wraptext
If true, the content in the control will wrap. It is true by default.

 JavaScript Components

 193

This property sets white-space for the control to 'normal' if true, and 'no-wrap' if false.
Therefore, this may change the behavior if the HTML control is in a paged pane, and
possibly in other cases where the white-space would have been inherited by a parent
element.

Page Pane
A default CSS classname ‘omnis-pagedpane-page’ has been added to the Page Pane
control. This allows you to apply CSS styling or behavior to each page of the paged
pane control.

In addition, a CSS rule (-webkit-overflow-scrolling: touch;) has been added to enable
momentum scrolling on iOS, i.e. for touch iOS devices, scrolling slows down before

stopping.

Alpha Colors for Controls

Some of the Remote form class controls and Window
class controls now support alpha colors, meaning that you
can set the transparency for the color of the control. The
color selection dialog in the Property Manager will now
display an alpha selection slider if the current selected
control supports alpha colors (the alpha slider is hidden

for controls that do not support alpha).

The controls that support alpha colors include the Line,
Oval, Rect and RoundRect background objects for
windows.

There is a new function rgba() that can be used to set the
RGB color and alpha setting for controls. The syntax is
rgba(red,green,blue,alpha) with each parameter being an
integer value in the range 0-255, where an alpha value of
255 means completely transparent. For example, to set
the color of a window background object, in this case 50%
transparent red:
Calculate $cwind.$bobjs.1016.$forecolor

as rgba(255,0,0,127)

In addition, the color selection palette for the controls that support the use of a color
palette or a popup color palette, including the colorpalette control, push buttons, and
toolbars, now include the new alpha selection slider.

When assigned a color with no alpha the palette will automatically hide the alpha slider.
If the control is assigned an alpha value, the palette will display the new alpha slider.

For example, where colorbutton is a push button with $buttonmode set as
kBMcolorpicker:
Do $cwind.$objs.colorbutton.$contents.$assign(rgb(255,0,0)) ## will cause the

color palette not not show an alpha value

Do $cwind.$objs.colorbutton.$contents.$assign(rgba(255,0,0,127)) ## will

cause the color palette to show an alpha value

The Omnis external component interface has been updated so external components
can support alpha colors. The example WASH control has been updated to
demonstrate this.

The Export & Import Library to JSON options have been updated to support alpha color
values for controls.

Tree List
Tree lists now scroll to view the current line in the list, and any parents opened as
necessary, whenever the current line changes or the $currentnodeident property is set.

What’s New in Omnis Studio 10.0

194

In a non-multiple select tree lists, setting either the current line in the list or the

$currentnodeident will select the line and scroll to it. This applies to flat list trees only.

In multiple select tree lists, setting the current line will scroll to that line but will not
select it. Setting $currentnodeident notationally will set both the current line and select
the node. Tree lists without checkboxes will clear any current selection, but tree lists

with checkboxes will not. This behavior mimics the user behavior of clicking a node.

In multiple select tree lists, the $currentnodeident and the current line in the list can
reference different nodes; however, in single select tree lists, they will always reference
the same nodes.

Droplists
Horizontal Padding

The Droplist and Combo Box controls now have the property $horzpadding to allow
you to add extra horizontal padding, in pixels, to the text in the list part of the control.
This property has also been added to Combo boxes.

Selected Value

A new property $seldataname has been added to the Droplist control that allows you to
specify the name of an instance variable, which will be populated automatically with the
selected value from the droplist.

$active Property
As part of the work to make the JavaScript Client meet Accessibility guidelines, a new
$active property has been added to all JavaScript controls; the $active property is set
to kTrue for all new controls, except the Label Control which has $active set to kFalse.
The $active property allows you to control whether a component is active (kTrue) or
inactive (kFalse) – in an inactive state, a component cannot be interacted with at all, so
the end user cannot tab to it, the contents cannot be selected or scrolled (in a list), and
user clicks on an inactive control are ignored. Therefore, when a control is inactive, it is
completely ignored in the tabbing order, so when the end user tabs the focus will jump
to the next active control – in the context of accessibility, an inactive component will be
ignored.

$enabled property

Most JavaScript controls had the $enabled property in previous versions which allowed
you to disable or enable the control. For some controls, the $enabled property has
been removed and replaced with the $active property. Other controls have kept the
$enabled property, but also have the new $active property.

The behavior of the $enabled property is now better defined, so when false, the control
is in a read-only state, which means it can be tabbed to, and interacted with in such
ways that do not alter its state. For example, the end user can press tab to move
the focus between lines in a list without changing the current line in the list.

The following table summarizes the presence and default setting of the $enabled
property for JS controls in Studio 8.x, and the default setting or status of $enabled and
$active for new JS controls in Studio 10.

 Studio 8.x Studio 10

JS control $enabled $enabled $active

Activity Control kTrue Removed kTrue

Background
Control

kTrue Removed kTrue

BarChart
Control

kTrue kTrue kTrue

 JavaScript Components

 195

 Studio 8.x Studio 10

JS control $enabled $enabled $active

Button Control kTrue Removed kTrue

Checkbox
Control

kTrue Removed kTrue

ComboBox kTrue kTrue kTrue

Complex Grid kTrue kTrue kTrue

Data grid
Control

kTrue kTrue kTrue

Date Picker
Control

kTrue kTrue kTrue

Device Control kTrue kTrue kTrue

Droplist kTrue Removed kTrue

Edit Control kTrue kTrue kTrue

File Control kTrue Removed kTrue

HTML Object NA NA kTrue

Hyperlink

Control
kTrue Removed kTrue

Label Object kFalse kFalse kFalse

List Control kTrue kTrue kTrue

Map Control kTrue kTrue kTrue

Navigation Bar
Control

NA NA kTrue

Navigation
Menu Object

kTrue Removed kTrue

Page Control kTrue Removed kTrue

Paged Pane kTrue kTrue kTrue

Picture Control kTrue Removed kTrue

PieChart
Control

kTrue kTrue kTrue

Popup Menu
Control

kTrue Removed kTrue

Progress Bar
Control

NA NA kTrue

RadioGroup
Control

kTrue Removed kTrue

Rich Text
Editor Control

kTrue kTrue kTrue

Segmented
Control

kTrue Removed kTrue

Slider Control kTrue Removed kTrue

What’s New in Omnis Studio 10.0

196

 Studio 8.x Studio 10

JS control $enabled $enabled $active

Subform kTrue kTrue kTrue

Switch Control kTrue Removed kTrue

Tab Control kTrue Removed kTrue

Timer Control kTrue Removed kTrue

Toolbar Control NA NA kTrue

TransButton
Control

kTrue Removed kTrue

Tree Control kTrue kTrue kTrue

Video Control kTrue Removed kTrue

Conversion

When a library is converted, controls that now only have an $active property will inherit
the kTrue/kFalse value of the $enabled property. Any code that was used to assign
$enabled on these controls at runtime will be automatically re-routed to apply to
$active. This means that your applications should still work in the same way as before,
but you are advised to thoroughly test the behavior of any controls that previously used
the $enabled property, and any code that checked the value of $enabled.

On conversion, controls that previously had $enabled set to kFalse, that now have both
$enabled and $active properties, will still have $enabled set to kFalse, but $active will
be set to kTrue. An exception to this is if a Label control had $enabled set to kTrue, it
will keep $enabled set to kTrue, but $active will be set to kFalse.

Context Menus

Context menus previously only opened via clicks onto a control if $enabled for the
control was kTrue. In Studio 10, context menus are opened if $active of the control is
kTrue. If you wish to disable this behavior for a control, you should use Quit event
handler (discard event) when handling evOpenContextMenu in your event handling
methods for the control.

Sizing Objects
You can use the Same Width/Height options on the Align menu to make all the fields
on a form the same width or height using the largest size of all the currently selected
objects. Now you can hold down the Ctrl (Windows) or Cmnd (macOS) key while
selecting the menu item to use the smallest size in the group to set the width or height
of the objects (also applies to window & report class objects).

Tooltips and Carriage Return
Text in tooltips will now wrap if it contains a carriage return character or other wrapping
characters when the text width of the tip would exceed a third of the screen width. In
previous versions, tooltips only used CR to line wrap when the width of the tip was
greater than half the screen width.

In addition, the CR character is no longer displayed. However, any other control
characters (characters less than space, or the character 0x7f) are displayed using the
Unicode control character page.

This change also applies to tooltips for window class controls.

 Remote Debugger

 197

Adding Customized JavaScript Components
You can now add your own customized JavaScript components to the Component
Store under your own tab. To do this, you need to create a new remote form, copy any
components you want to customize from the JSFormComponents form, and add them
to your own form. This might be useful if you always want to create edit controls or
buttons with certain properties (e.g. colors or fonts)

You will need to edit the Component Store library (comps.lbs) to change the contents
of the Component Store. To open the Component Store library, right click on the
background of the Component Store itself and select ‘Show Component Library in
Browser’. We recommend that you do not change the components in the
JSFormComponents form since these are the default components that appear in the
Component Store, rather you should create your own customized components using
the following method.

Add a new remote form class to the Component Store library; note that the name of the
new remote form will be used as the tab name in the Component Store toolbar. Set the
$componenttype property of the remote form to kCompStoreDesignObjects using the
Notation Inspector: to do this, open the Notation Inspector, click on the Search button
(the cursor changes to a spy glass), click on your remote form in the Studio Browser,
and in the Property Manager set $componenttype to kCompStoreDesignObjects (note
the $componenttype property will only be displayed via the Notation Inspector).

With your new remote form open, open the JSFormComponents remote form next to it.
Drag any JavaScript controls you want to customize from JSFormComponents into
your remote form and change their properties or appearance as required. After you
hide the Component Store library, the customized JavaScript controls will be available
in the new group in the Component Store.

JavaScript Component Templates
When you add a JavaScript Component to a remote form in your code at runtime,
Omnis now uses a template to create the object with all the required properties and
methods. There is a template for every type of JavaScript Component, and the
templates are located in the \studio\componenttemplates folder.

The component templates match the default components in the Component Store, and
should not be edited. There are templates for report and window class components as
well.

Remote Debugger
Remote debugging allows you to debug your Omnis code remotely over the network.
You use a development copy of Omnis Studio, the remote debug client, to connect
over the network to another copy of Omnis Studio, the remote debug server.
References to “the debugger” in this section refer to the remote debugger, while any
references to the local Omnis Studio debugger use the term local debugger. Some key
points to note:

❑ The remote debug server runs the code that is to be debugged, and it can be any
type of installation: development, thick client runtime, server or headless server.

❑ Omnis code running in the multi-threaded server, in server stacks other than the
main stack, can be debugged.

❑ The remote debug server and client do not need to be running on the same
operating system.

❑ The version of the client must be the same or later than the version of the server.

❑ Protected classes and locked libraries can be debugged.

Although the term remote debugger is used, the remote debugger client and server can
be on the same computer, and in fact the client and server can be the same Omnis

What’s New in Omnis Studio 10.0

198

process. In the latter case, the remote debug client runs with some restrictions, which

are discussed later.

Connectivity
The remote debug client and server always connect to each other over a WebSocket.
This applies even if the client and server are running in the same Omnis process. The
WebSocket connection is a direct connection from client to server, so it may require a
port in the firewall to be opened on the server. As WebSocket connections start as
HTTP connections, a WebSocket can be a secure TLS connection, and it can require a
client certificate to authenticate the client. For the Remote Debugger, a TLS connection
is always required, so the WebSocket starts as HTTPS.

An established connection between a remote debug client and server is called a
remote debug session, or just session. A copy of Omnis that is running as a remote
debug client or server, or both, can run only one session at a time.

Remote Debug Server

In the developer version of Omnis, you can configure the Remote Debug Server by
clicking on the Omnis Studio (root) node of the Studio Browser tree, and clicking on the
Remote Debug Server link.

In a runtime version of Omnis (not headless), if the library remotedebug.lbs is in the
startup folder, there is a menu named Remote Debug. This contains a single menu
item that can be used to open the window. In the headless server you can configure
remote debugging via the OS Admin window.

The Remote Debug Server window has two tabs, one to control the server, and the
other to configure the server.

The Control Server tab has a single button, used to start or stop the server - the button
text changes depending on the current state of the server. Until the remote debug
server is started, it will not accept a connection from a remote debug client.

The Configure Server tab allows you to enter configuration details for the remote
debugger server. The Configure Server tab shows fields that correspond to the entries
in the configuration file. These fields are described in the following sections.

Remote Debug Server Configuration file

The remote debug server configuration is stored in the file called
remote_debug_server_config.json, located in the folder
clientserver/server/remotedebug in the data folder of the Omnis installed tree.

You can edit this JSON file directly as a text file, or use the Remote Debug Server
window, as described above.

You should note that Omnis uses a node.js server running alongside Omnis to provide
the WebSocket server; this communicates with Omnis using a local in-memory socket.
As a consequence, some of the configuration information stored in
remote_debug_server_config.json is used by node.js. An example configuration file:
{

 "debugPort": 8080,

 "serverPfx": "server.pfx",

 "pfxPassPhrase": "xxxxxx",

 "ca": ["server_cert.pem"],

 "requestCert": false,

 "rejectUnauthorized": false,

 "userName": "myUser",

 "hashedPassword":

 "AAGGoAAAABBSEkknQUIeHQHu1sIyWxlSAAAAIHw9kvCVF4tE//SMpbSGVD/RKJLekoR7TlTv

ZVy3MbkJ",

 "startRemoteDebugServerAtStartup": true,

 "pauseAtStartupUntilDebuggerClientStartsExecution": false,

 Remote Debugger

 199

 "logConnectionSetup": false

}

Debug Port

The TCP/IP port on which the WebSocket server listens for incoming connections from
a client.

Server PFX

This is a file containing the server certificate and private key. It must be in the same
directory as remote_debug_server_config.json. The default install tree has a self-
signed certificate and key generated by the openssl command (available on any
system where openssl is installed). You will need to provide your own private key and
certificate. You can generate a new private key and self-signed certificate using the
following openssl commands:

openssl req -x509 -newkey rsa:4096 -keyout server_key.pem -out server_cert.pem

-nodes -days 1024 -subj "/CN=localhost/O=Demo" -passin pass:xxxxxx

openssl pkcs12 -export -out server.pfx -inkey server_key.pem -in

server_cert.pem

This file is set as the pfx option when calling the node.js method https.createServer().
You can find more documentation about this in the node.js documentation online:

https://nodejs.org/docs/latest-v8.x/api/https.html#https_class_https_server

https://nodejs.org/docs/latest-

v8.x/api/tls.html#tls_tls_createsecurecontext_options

PFX Pass Phrase

This is the pass phrase used to protect the Server PFX file. In the example in the
previous section this is xxxxxx.

CA

See https://nodejs.org/docs/latest-v8.x/api/tls.html#tls_tls_createsecurecontext_options
for more details. You would typically only set the CA when using a self-signed
certificate, in which case it has a single entry. In the Server PFX section above, the
certificate was signed using server_cert.pem. The general value of this is a comma-
separated list of trusted CA certificate file names. The files must all be in the same

directory as remote_debug_server_config.json.

Request Client Certificate

A Boolean option. If true, the node.js server requests a client certificate to authenticate
the client. The client certificates are discussed later, in the client connectivity section.

Reject Unauthorized

A Boolean option. If true, the server will reject any connection which is not authorized
with the list of supplied CAs. This option only has an effect if Request Client Certificate
is true.

User Name

If not empty, the WebSocket connection also uses HTTP basic authentication to
authenticate the user, in which case this field contains the user name used for HTTP
basic authentication.

Hashed Password

If the User Name is not empty, this is the PBKDF2 hash of the password required for
HTTP basic authentication.

https://nodejs.org/docs/latest-v8.x/api/https.html#https_class_https_server
https://nodejs.org/docs/latest-v8.x/api/tls.html#tls_tls_createsecurecontext_options
https://nodejs.org/docs/latest-v8.x/api/tls.html#tls_tls_createsecurecontext_options
https://nodejs.org/docs/latest-v8.x/api/tls.html#tls_tls_createsecurecontext_options

What’s New in Omnis Studio 10.0

200

Start Remote Debug Server

This Boolean option controls whether the remote debug server automatically starts
when Omnis starts.

Pause Execution At Startup

If the remote debug server is configured to automatically start when Omnis starts, you
can set this Boolean option to true to make Omnis pause execution at startup before it
runs the startup tasks of libraries in the startup folder.

When using this option, Omnis displays a working message (Waiting for remote debug
client to start execution…), and enters a loop where it waits for a remote debug client to
open a session. Once a session is opened, Omnis remains in the loop, where it is now
waiting for a command from the client to start execution. During this loop, the client can
inspect remotely debuggable code, and set breakpoints for example.

The loop terminates either when the client sends a command to run startup, or when
the remote debug session closes, or when a user clicks the cancel button on the
working message displayed on the server. When the loop terminates, Omnis runs the
startup tasks for the libraries in the startup folder.

Remote Debug Client

The remote debug client is accessible via a new node in the Studio Browser tree,
“Remote Debug Client”. It uses a similar session model to the Omnis VCS. When you
click on the Remote Debug Client node in the tree, hyperlinks appear in the browser
panel for Session Manager, and Open Session.

The session manager allows you to configure remote debug sessions. Each session
provides the parameters that allow the remote debug client to establish a WebSocket
connection to a remote debug server. These parameters are described in the following
sections.

Name

A name that identifies the session.

Server

The IP address or DNS name of the remote debug server.

Debug Port

The debug port configured for the remote debug server. When connecting to the
server, the client connects to a URL of the form
 wss://Server:DebugPort

Client Certificate

If the server requires a client certificate, you specify this here.

You can generate a client certificate using the openssl commands:
openssl req -newkey rsa:4096 -keyout client_key.pem -out client_csr.pem -nodes

-days 1024 -subj "/CN=192.168.1.11" -passin pass:xxxxxx

openssl x509 -req -in client_csr.pem -CA server_cert.pem -CAkey server_key.pem

-out client_cert.pem -set_serial 01 -days 1024

Note that this uses the server key and server certificate generated in the example for
the Server PFX field of the remote debug server configuration. The client certificate
needs to be installed on the client machine.

On Windows, generate a client.pfx file:
openssl pkcs12 -export -out client.pfx -inkey client_key.pem -in

client_cert.pem

Import client.pfx into the windows certificate store: double click on the pfx, add to
Personal certificates for the current user.

On macOS, generate a pkcs12 file:
openssl pkcs12 -export -out client.p12 -inkey client_key.pem -in

client_cert.pem

 Remote Debugger

 201

Double click on the file to add it to the keychain.

You can find more details about this in the CURL documentation at:

https://curl.haxx.se/libcurl/c/CURLOPT_SSLCERT.html

Note the Client Certificate parameter is the value passed to the CURL option
CURLOPT_SSLCERT.

On Windows, the client certificate parameter is a path expression to a certificate store

e.g.

CurrentUser\MY\afe2179599460d20da08c12e8c328d84bd300735

where afe2179599460d20da08c12e8c328d84bd300735 is the thumbprint viewed by
double clicking on certificate in the MMC (MMC certificate snap-in view, details tab,
thumbprint field).

On macOS, you can specify either the path of the p12 file, or the keychain name of the
client certificate.

User Name

If the server uses HTTP basic authentication, the user name required for that.

Password

If the server uses HTTP basic authentication, the password required for that.
Alternatively, you can leave this empty, and the client will prompt for the password
when it is required.

Server Connection Logging

You can monitor the client connection to the Remote debugging server, which allows
you to highlight any connection problems. You can enable logging in the remote debug
client window (or in the config file in the logConnectionSetup item).

If enabled, the Remote Debug Client writes a log file named <session name>.htm to
the logs/remotedebug folder, containing a log of what occurred when attempting to
connect to the remote debug server. Note that the log is not written until the
connection closes.

Preparing Code For Remote Debugging
You have to enable remote debugging in the library, and in the task instance (remote or

standard for thick client), by setting the $remotedebug property.

Library

By default, a library cannot be debugged by the remote debug client, meaning that
when the remote debug client connects to a server, the library will not appear in the
client interface. If you wish code in a library to be debugged with the remote debugger,
you need to set a new library property, $clib.$remotedebug: if true, remote debugging
of this library is allowed, but it cannot be set to true in an always private library, which
means you must set this property to true before making the library always private.

Task

Setting $clib.$remotedebug allows the library and its classes to appear in the remote
debug client interface. This allows you to browse the code and set breakpoints.
However, only tasks and remote tasks marked for remote debugging will react to these
breakpoints. This provides more control over debugging, and specifically in the multi-
threaded server, it prevents one breakpoint from stopping every client that hits it.

To mark a task or remote task for remote debugging, set the $remotedebug property of
the task instance to kTrue.

What’s New in Omnis Studio 10.0

202

In addition, you can set this property of a remote task by adding a query string
parameter to the URL used to open a JavaScript client form or execute an ultra-thin
request: omnisRemoteDebug=1, for example:
http://127.0.0.1:5981/jschtml/jsDragDrop.htm?omnisRemoteDebug=1

Remote Debugger Interface
Opening a Session

To use the remote debugger client after configuring a session, click on the Remote
Debug Client node in the Studio Browser tree, click on the Open Session hyperlink,

and then click on the hyperlink for the session you want to use.

This will cause the client to establish a WebSocket connection to the server. While the
connection is being established, progress is displayed in the browser panel, although
this is usually very quick. In addition, a Cancel Open Session hyperlink is displayed

while the connection is being established.

Browsing Libraries

After the session opens, libraries marked for remote debugging appear in both the
browser tree and the browser panel.

The Remote Debug Client child nodes have similar behavior to the Libraries node child
nodes, so they include both libraries and folders within the libraries. When you select a
child node, the browser panel updates to show the content of that node - this
comprises a list of all classes that can contain code.

While any node in the remote debug client sub-tree is selected, a Close Session
hyperlink is displayed. In addition, if a single class is selected in the browser panel, a
hyperlink named “Open debug window” is displayed. You can click on this (or double
click on a class in the panel) to open the remote debug window for the class.

Finally, if the server is paused, waiting to run startup, the hyperlinks include a link
named “Run Startup” that can be used to tell the server to carry on and run its startup
processing.

Save Window Setup for the browser window remembers column positions for the list
view of the remote debug client panel.

The status bar of the browser window includes the name of the currently open session.

The Remote Debug Window

The remote debug window has a similar layout to the method editor. The main
difference is that it always shows the debug panel (there is no editor panel), and in the
bottom right-hand corner there is a new variable panel rather than the watch panel.

The window shares both its fonts and keyboard shortcuts with the method editor. So if
you open the Fonts… dialog from either of these windows, you are editing the same
configuration information (stored in keys.json under
methodEditorAndRemoteDebugger).

 Remote Debugger

 203

Remote Debugger Toolbar

From left to right, the toolbar controls are as follows. Note that there is no configuration
mechanism to change these.

Back

Navigates to the previous method in the history stack for the window. Note that unlike
the method editor, there is a separate history stack for each remote debug window.
This allows operations such as open superclass methods and open specified class to
operate within the context of a single window, and also works more appropriately when
you have several windows all paused at a breakpoint.

Forward

Navigates to the next method in the history stack for the window.

View

Open specified class is similar to the Modify Specified Class command in the method
editor - when a method line is selected, it opens the method referred to by the
command, if one can be identified.

In addition to a context menu command in the tree, the View menu also has a
command to go to the superclass methods if relevant (also available on the Modify

menu for the method editor).

Find

This allows you to perform find operations on the currently selected method.

Instance

The remote debug window can be associated with an instance. This allows you for
example to view instance specific methods or objects that have been added during
runtime execution. The instance menu allows you to close the instance, detach the
debugger from the instance, or attach the debugger to an instance. Note that this menu
is disabled as soon as the remote debug window becomes associated with some
executing code (by hitting a breakpoint).

Stack

When execution is paused this allows you to select items on the call stack, or clear the

stack.

Go, Step In, Step Over, Step Out

Like the standard method editor, these commands allow you to start execution (Go)
and step through your debuggable code. The step commands step until the next

What’s New in Omnis Studio 10.0

204

debuggable command, so if code which is not debuggable is encountered execution

will not pause there.

Go Point

This allow you to set the go point to a different line in the method at the top of the call
stack.

Breakpoints

This allows you to manage breakpoints. Note that the method editor has also been
changed to remove individual Breakpoint and One-time breakpoint buttons, and use a
similar menu to this for consistency.

The Set Condition… command allows you to set a condition on a breakpoint. The
condition is a calculation that must evaluate to true for the breakpoint to pause
execution. The condition dialog provides some code assistance, by using variable
names (of task, class, instance, local, parameter and event parameter variables)

present in the currently displayed method.

Note that the code panel and the breakpoint panel both provide alternative ways to
work with breakpoints, in a similar way to the method editor - so the left column of the
code panel can be used to set and clear breakpoints, and the breakpoints panel has a
context menu to do this. Set Condition… is not available in the breakpoints panel
context menu, because the method affected may not currently be displayed.

Variable Panel

The variable panel in the Method Editor will be populated while debugging your code
remotely, and allows you to view and modify variables. (The Variable panel was
introduced for Remote Debugging in Studio 10.0, but is now available in the standard
Method Editor in Studio 10.1: it is described in detail in the Studio 10.1 section in this
manual).

Keeping the Client in Step with the Server

You should bear in mind that the set of libraries and instances being debugged can
change on the server. Omnis keeps the client up to date with the server using a
combination of notifications sent from the server, and lazily applied updates to the
client. For example, if a library closes on the server, the client is informed, and it
updates the interface to reflect this - this means it removes it from the browser tree,
and closes any remote debug windows for classes in the library. However, if a method
changes on the server, the client will not receive the updated method until it requests it
again - note that each time the client performs a debug operation, e.g. step over, the
client will request the method when the action completes - if the method has changed

on the server, the client will receive a new copy as part of the step action.

Execution

Execution Contexts

An execution context is either the main thread or a remote task instance. When
execution suspends for an execution context, the remote debug client looks for the
debug window associated with the context, and uses that. If there is no debug window
for that context, the client looks for a suitable open remote debug window for the class,
and if one exists that is not associated with a context it will use it, and associate the
window with the context; otherwise the client opens a new window and associates it
with the context. Once a window is associated with an execution context, all debugging
for that context occurs in that window. A window associated with an execution context
can only be closed if execution is not currently paused.

This approach means you can be simultaneously debugging several remote task
instances for example. Each execution context uses a single window.

All in one process

As stated earlier, the remote debug client and server can be the same process. In this
case:

 Remote Objects

 205

When execution suspends in the main thread, the remote debug window for the main

thread context becomes fully modal.

You cannot debug code running in a critical block in the multi-threaded server.

Errors

If an error occurs during Omnis code execution, e.g. Open window instance with a bad
window name, and the line of code causing the error is remotely debuggable, the
remote debugger pauses execution at the line causing the error.

Local Debugger

While the remote debugger is attached to a copy of Omnis, the local debugger is

disabled in that copy. This also affects the ability to right click and view variable values.

Omnis Language

There is a new sys() function, sys(238) that returns a Boolean which is true if the
remote debug server has been started.

Remote Debugger In Control

When the remote debug server and client are not the same process, and execution is
suspended for the main thread on the server, the following window appears on the
server (this does not apply to the headless server):

While this window is displayed, the only action that can be performed on the server is a
click on the button to stop the remote debug server, and run (meaning execution
continues from where it was paused).

Note that if you do choose to stop the server, then the session will close on the client,
and all remote debug windows open on the client will close. If you subsequently restart
the server (without restarting Omnis), and open a new session from the client, any
breakpoints set for the previous session will still be set.

Remote Objects
The Remote Object is a new library class type. Remote Object classes are Object
classes that are instantiated and executed entirely on the client, in the JavaScript
Client. Each Remote Object class instance has a JavaScript object “class” that directly
corresponds to it on the client.

Why would I use a Remote Object? You may have some code that you want to be
executed purely on the client, and you want to use it in multiple remote forms, so a
Remote Object would provide a better way to structure the code in your application,
that is, it provides an alternative to having to inherit methods from a remote form

superclass, so may be useful in a serverless-client based mobile app.

Creating Remote Objects
The Studio Browser window allows you to create a new Remote Object, create a
subclass of an existing remote object class, and edit a remote object. Editing a remote
object opens the Method Editor, in the same way as when you edit a normal object

class. Within the Method Editor itself, the main difference is that every method in a
remote object class is always marked as client-executed.

The JSON library representation now includes support for remote objects. You can
print methods in a remote object class.

What’s New in Omnis Studio 10.0

206

Find and replace supports remote object classes, and has an additional entry in the

class selection menu, to select remote object classes.

The inheritance tree includes a node for remote object classes.

Omnis Language
Library Notation

The notation for manipulating remote objects is similar to that for objects. There is a
new group within each library, called $remoteobjects, containing all of the remote
object classes in the library. Each remote object class has a subset of the properties
and methods supported by object classes:

Variables

Remote object classes can have class and instance variables. These are restricted to
the set of client execution data types: var, date, list, row, and (new for remote object
support) object. In addition, each method in a remote object class can have local
variables, which are likewise restricted to the set of client execution data types
including object.

Creating Instances
You create an instance of a remote object by specifying the remote object class name
as the subtype of a variable in a remote object (see the previous section) or for remote
forms, either:

• a local variable of type object in a client-executed method

• or a remote form instance variable of type object.

Note that this means that remote form instance variables of type object can now have a
remote object class as their subtype, in addition to an object class or a non-visual
external object. Remote form object variables with a remote object as their subtype are
not synchronised between client and server – they exist only on the client.

Behavior

You can write the methods in a remote object class in the same way as you create the
methods in an object class, except you are restricted to client-executable code.
Inheritance works as you would expect using the normal Omnis mechanism, although
you cannot override variables in a subclass – you must inherit superclass variables.
Variables are referenced as you would expect, e.g. you can just use iName or you can
use $cinst.iName.

However, note that you cannot use $new to create a new remote object instance. This
is because the Omnis server needs to be able to quickly parse a remote form and its
superclasses in order to determine the remote object classes it uses, in order to
generate the code correctly.

Remote objects do not execute $destruct, because they are JavaScript objects (which
are naturally garbage collected by the execution environment).

If you execute a remote form method marked as client-executed, by calling it from a
server method, then because the method is actually executing on the server, Omnis

will generate an error if you try to use a remote object.

When coding in the Method Editor, the Code Assistant will only provide assistance for
remote object instance variables, and object instance variables, when you are coding
for an environment that is applicable: so for example, you would get no assistance for a

remote object instance variable when coding a server-executed method.

When passing remote objects around between methods, bear in mind that they are
passed by reference, so they are never copied.

 Web and Email Worker Objects

 207

$cwind for remote objects

You can use the notation $cwind from code written in a remote object, to refer to the
top-level remote form instance that contains the remote object, for example, you can
write code like the following in a remote object method:
Calculate $cwind.$objs.[pName].$backcolor as

pick($cinst.$isodd(),kMagenta,kCyan)

In addition, you can the notation $cinst.$container in a remote object to refer to the
remote form that immediately contains the remote object.

Code Generation
The Omnis server automatically generates the JavaScript code for remote objects, in a
similar way to how it generates JavaScript code for client-executed methods in remote
forms. The JavaScript for each remote form contains the JavaScript for all of the
remote objects it uses, using a conditional test which means that if 2 remote forms use
the same remote object, the code used for all instances of the remote object will be that
loaded with the first remote form.

If you modify and save a remote object class, Omnis will regenerate the code when the
remote form is re-loaded.

Web and Email Worker Objects
JavaScript Worker Object
The node.js framework contains many open source third-party modules that can be
used from inside your Omnis code: node.js is now embedded into Omnis Studio. The
new JavaScript Worker Object allows you to execute JavaScript methods inside
node.js by making the request in Omnis code by calling a worker object method, and
receiving the results via a worker callback. For example, the library ‘xml2js’ is included
in Omnis Studio, which converts XML to JSON: in addition, support for ZIP can be
added using the node.js jszip module, which is described at the end of this section.

Enabling Javascript Methods

There is a new JS file, ow3javascript.js, located in the clientserver/server/remotedebug
program folder, that is the entry point for all method calls: on macOS, the remotedebug
folder is in the Resources folder in the Omnis.app bundle. Method calls arrive as an
HTTP request from Omnis, and respond with their results as HTTP content. A worker

executes methods sequentially.

Omnis has a simple structure where you can write a JavaScript module containing one
or more methods, and then call methods via their module and method name.

In the Omnis data folder, there is a new folder called node_modules, where modules
required by ow3javascript.js are located. You can install additional node.js modules in
this folder using the npm -i command when running in the folder - these might be
modules for which you want to provide an interface from Omnis.

There are two key files in this folder, which must always be present:

omnis_calls.js - a module which provides an interface for methods to return their results

to Omnis.

omnis_modules.js - a module which provides a table of modules that can be called
from Omnis.

There are also two example module files, omnis_test.js and omnis_xml2js.js. These
provide Omnis modules named test and xml2js. Each module file must have an entry in
omnis_modules.js. Each module file provides a table of methods that can be called
from Omnis.

What’s New in Omnis Studio 10.0

208

Note that node_modules in the data folder may not be considered suitable for
deployment, since the data folder is writeable. The worker provides the ability for you to
structure things differently when you deploy your application, but is fine for
development.

Creating the worker

The sub-type of the external object is OW3 Worker Objects\JAVASCRIPTWorker. You
can use either an Object variable or an Object Reference variable, either directly if you
set $callbackinst to receive results, or by subclassing the external object with an Omnis
object.

Properties

The JavaScript worker only has the standard worker properties: $state, $threadcount,

$errorcode and $errortext.

Methods

Called Methods

$init()

$init([cPath, bDebugNodeJs=kFalse])

Initialize the object so it is ready to execute JavaScript method calls. Returns true if

successful. You must call $init() before any other methods.

❑ cPath
allows you to override the default NODE_PATH module search path set by the
worker. The default path is <Omnis data folder>/node_modules. If you override this
path, the various JavaScript modules that are mandatory for the worker to operate
must still be able to be located.

❑ bDebugNodeJs
is a Boolean that indicates if you want to be able to debug node.js, for example
using Chrome. It is possible that you may not be able to start the worker if you set
this for more than one active JavaScript worker, as node.js requires a debug port to
be available. To debug the JavaScript in Chrome, navigate to chrome://inspect, and
then open the dedicated debug tools for node.js via the link.

$start()

$start()

Runs the JavaScript worker in a background thread. Returns true if the worker was
successfully started.

After you call $start(), the background thread starts up a node.js process which will
process JavaScript method calls. You can make multiple method calls to the same
process, so there is no need to call $start() frequently, which means the overhead of
starting the node.js process is minimal.

$cancel()

$cancel()

Use this to terminate the node.js process. Any in-progress method calls may not
complete.

$callmethod()

$callmethod(cModule, cMethod, vListOrRow [,bWait=kFalse, &cErrorText])

Call the method passing it a single parameter which is the JavaScript object
representation of vListOrRow. Optionally wait for the method to complete. Returns true
if successful.

cModule and cMethod identify a module, and a method within the module, to call, as
described above.

 Web and Email Worker Objects

 209

vListOrRow will be converted to JSON, and passed to the method as its parameter.
This means that you should be aware of data that will not map to JSON, and avoid
trying to pass that to $callmethod.

bWait indicates if the caller wishes to suspend execution until the method completes. If
you use bWait, then a completion callback will occur before $callmethod returns.

cErrorText receives text describing the error if $callmethod fails.

Callback Methods

$cancelled

Override this to receive a notification that the request to cancel the worker has
succeeded.

$workererror

$workererror(wError)

Override this method to receive reports of errors from the worker that are not related to
calling a method, e.g. failure to start node.js. The worker thread exits after generating

this notification.

wError has two columns, an Integer named errorCode and a Character string named
errorInfo.

$methoderror

$methoderror(wError)

Override this method to receive reports of the failure of an attempt to call a method with
$callmethod.

wError has two columns, an Integer named errorCode and a Character string named

errorInfo.

$methodreturn

$methodreturn(wReturn)

Method called with the results of a call to $callmethod.

wReturn is a row. If the JavaScript method returns an object, this is the Omnis
equivalent of the object, created by converting the JSON to a row. If the JavaScript
method returns some other data, e.g. a picture, this is a row with a single column
named content, which contains the data returned by the method.

Example: Adding ZIP support

You could add support for ZIP files. To do this, install the node.js jszip module by
running the npm command in the node_modules folder:
npm i jszip

 (the npm command is installed with node.js, available on the web)

Edit omnis_modules.js as by adding this line after the other require() lines:
 const zipModule = require('omnis_zip.js');

Add this entry to the moduleMapClass:
 zip(method, obj, response) {

 return zipModule.call(method, obj, response);

 }

You can then make calls from Omnis code as follows:
 Do lRow.$cols.$add("path",kCharacter,kSimplechar)

 Calculate lRow.path as iZipPath

 Do iJS.$callmethod("zip","loadZip",lRow,kTrue,lErrorText) Returns lOK

What’s New in Omnis Studio 10.0

210

POP3 Worker Object
A POP3 Worker Object has been added to the OW3 Worker Objects. The POP3
worker is similar to other OW3 workers, in that you pass an action to $init and action
specific parameters, and use $run or $start to execute the request. There is a new
sample app in the HUB in the Studio Browser.

The $init method has the following syntax:

❑ $init()
$init(cURI,cUser,cPassword,iAction[,iMessageNumber,cPostCommand])
Initialises the object so it is ready to perform the specified action using POP3.
Returns true if successful

The $init parameters are:

❑ cURI The URI of the server,optionally including the URI scheme (pop3 or pop3s)
e.g. pop3://pop3.myserver.com. If you omit the URI scheme
e.g. pop3.myserver.com,the URI scheme defaults to pop3

❑ cUser The user name to be used to log on to the POP3 server

❑ cPassword The password to be used to log on to the POP3 server

❑ iAction A kOW3pop3Action... constant that specifies the action to perform

❑ iMessageNumber The message number to get (applies to actions
kOW3pop3ActionGetMessage,kOW3pop3ActionGetHeaders and
kOW3pop3ActionDeleteMessage)

❑ cPostCommand Only applies to action kOW3pop3ActionGetMessage.If not
empty,a command to send to the server after getting the message.This would

typically be RSET to undelete messages or QUIT to delete messages

The Actions are:

❑ kOW3pop3ActionStat Gets maildrop status. For a successful request, wResults
has 2 columns returning the stat information, messageCount and maildropSize

❑ kOW3pop3ActionList Lists messages. For a successful request, wResults has a
column named messageList which contains a 2 column list, with columns
messageNumber and messageSize

❑ kOW3pop3ActionGetMessage Gets specified message. For a successful
request, wResults has either a column rawData or columns headerList and
mimeList (depending on the value of $splitfetchedmessage

❑ kOW3pop3ActionGetHeaders Gets headers for a specified message. For a
successful request, wResults has either a column rawData or a column headerList

(depending on the value of $splitfetchedmessage)

❑ kOW3pop3ActionDeleteMessage Deletes the specified message from the
maildrop

❑ kOW3pop3ActionQuit Sends a QUIT command to the server to ensure that any

messages marked for deletion are deleted

The worker has the following properties in addition to those supported by all OW3
worker objects:

Property Description

$splitfetchedmessage If true, worker splits fetched message into headers and
MIME list for any content. Defaults to true. If false, the
worker simply returns the raw fetched message data
(Applies to kOW3imapActionFetchMessage and

kOW3pop3ActionGetMessage)

$defaultcharset Used by kOW3imapActionFetchMessage and
kOW3pop3ActionGetMessage when there is no charset
for a MIME text body part. The charset used to convert

http://pop3.myserver.com/

 Web and Email Worker Objects

 211

to character. Default kUniTypeUTF8.A kUniType...
constant (not Character/Auto/Binary)

$keepconnectionopen If true, the worker can leave the connection to the server
open when it completes its request. Defaults to false. Note
that even when this property is set to true, a protocol error

may cause the connection to close.

$requiresecureconnection If true, and the URI is not a secure URI, the connection
starts as a non-secure connection which must be
upgraded to a secure connection (using STARTTLS or
STLS). If it cannot be upgraded then the request fails.
Defaults to false

CRYPTO Worker Object
A CRYPTO Worker Object has been added to the OW3 Worker Objects to allow you to
perform encryption and decryption of data. The encryption types you can use include
AES, Camellia, DES, and Blowfish.

The CRYPTO worker is similar to other OW3 workers, in that you pass an action to
$init and action specific parameters, and use $run or $start to execute the request.
There is a new sample app in the HUB in the Studio Browser to demo the CRYPTO
Worker Object.

To use the worker object, create a variable with its subtype set to the CRYPTOWorker
object which is contained in the OW3 Worker Objects group in the Select Object dialog,

or subclass the external object.

The CRYPTO worker has the following methods:

❑ $start, $run and $cancel
Standard worker methods

❑ $completed and $cancelled
Standard worker completion methods

❑ $makerandom
$makerandom(iBytes,&xRandomData) generates some random data with the
specified length in bytes. This is suitable for use as an encryption key or
initialization vector. Returns true if successful (if an error occurs, the standard
properties $errorcode and $errortext describe the error).
iBytes is the number of bytes of random data to generate

xRandomData is a binary variable that receives the random data

As with the other worker objects you can use the $init method with various input
parameters to initialize the object, while the action can be to Encrypt or Decrypt:

❑ $init
$init(iAction, iEncryptionType, iCipherMode, iPadding, xKey, xIV, vInputData
[,cOutputPath]) initialises the object ready to perform the encryption or decryption.
Returns true if successful

iAction can be either:

❑ kOW3cryptoActionEncrypt
Encrypt the data using the specified encryption scheme and parameters

❑ kOW3cryptoActionDecrypt
Decrypt the data using the specified encryption scheme and parameters

iEncryptionType can be one of:

❑ kOW3cryptoTypeAES
AES encryption. Key size must be 128, 192 or 256 bits

What’s New in Omnis Studio 10.0

212

❑ kOW3cryptoTypeCamellia

Camellia encryption. Key size must be 128, 192 or 256 bits

❑ kOW3cryptoTypeDES
DES encryption. Key size must be 64 or 192 bits. Uses Triple DES if key size is 192
bits

❑ kOW3cryptoTypeBlowfish
Blowfish encryption. Key size must be 128 bits

iCipherMode can be one of:

❑ kOW3cryptoCipherModeCBC

CBC (Cipher Block Chaining)

❑ kOW3cryptoCipherModeECB
EBC (Electronic Code Book)

❑ kOW3cryptoCipherModeCTR

CTR (Counter). Not supported for kOW3cryptoTypeDES

iPadding can be one of:

❑ kOW3cryptoPaddingNone
No padding (use this for cipher modes other than CBC and EBC)

❑ kOW3cryptoPaddingPKCS7
PKCS7 padding

❑ kOW3cryptoPaddingOneAndZeros
One and zeros padding (ISO/IEC 7816-4)

❑ kOW3cryptoPaddingZerosAndLen
Pad with N-1 zero bytes followed by a byte with value N, where N is the number of
padding bytes (ANSI X.923)

❑ kOW3cryptoPaddingZeros

Pad with N zero bytes, where N is the number of padding bytes

Note that PKCS7 is the most common and allows binary data to be correctly decrypted,
for example, kOW3cryptoPaddingZeros can lead to extra bytes being stripped from
decrypted binary data.

xKey is a binary containing the key. See the encryption types for details of supported
key lengths.

xIV is a binary containing the Initialization Vector (IV) (random data that can be used to
make the same encrypted data different when using the same key). This must be 8

bytes long for DES and Blowfish, and 16 bytes long for AES and Camellia.

vInputData is the data to be encrypted. Either a character value which is the pathname
of the file containing the data to encrypt or decrypt, or a binary variable containing the
data to encrypt or decrypt.

cOutputPath is:

❑ Either omitted or empty meaning that the encrypted or decrypted data is supplied to
$completed in the data column of the results row parameter (this column has type
binary)

❑ Or the pathname of a file (which must not already exist) to which the worker will
write the encrypted or decrypted data

The results row passed to $completed has 3 columns: errorCode, errorInfo and data.
The error columns behave in the same way as the other OW3 workers: note that a
negative error code is a code returned by the mbedTLS library. The data column is only
used when cOutputPath was omitted when calling $init.

The worker has properties as follows:

❑ $errorcode, $errortext, $state and $threadcount
Standard worker properties

 Web and Email Worker Objects

 213

❑ $useexplicitiv
If true, a random IV is added to the start of the data when encrypting or the first IV
size bytes is removed from decrypted data. Only applies to CBC cipher mode. This
means that a user can decrypt data without knowing the IV (any IV can be used for
decryption, which will result in just the first IV size bytes being decrypted incorrectly,

because of the way the CBC cipher mode works)

HASH Worker Object
A HASH Worker Object has been added to the OW3 Worker Objects to allow you to
hash data using SHA1, SHA2, SHA3, and RIPEMD hash types, which are primarily for
signature purposes, while PBKDF2 is available for password hashing. You use the
$inithash method to initialise the object, passing the binary or character data to be
hashed, and the hash type represented by a constant, as follows:

Hash type Constant

SHA1 kOW3hashSHA1

SHA2 incl hash output 256,

384, 512
kOW3hashSHA2_256

kOW3hashSHA2_384

kOW3hashSHA2_512

SHA3 incl hash output 256,
384, 512

kOW3hashSHA3_256

kOW3hashSHA3_384

kOW3hashSHA3_512

RIPEMD_160 kOW3hashRIPEMD_160

PBKDF2 kOW3hashPBKDF2

You can use $initverifyhash to verify or compare some data against previously hashed
data generated using $inithash. Having called the $init… methods, you can use $run
or $start to execute the request.

To use the worker object, create a variable with its subtype set to the HASHWorker
object which is contained in the OW3 Worker Objects group in the Select Object dialog,
or subclass the external object. There is a new sample app in the HUB in the Studio
Browser to demo the HASH Worker Object.

The HASH worker object has methods as follows:

❑ $start, $run and $cancel

Standard worker methods

❑ $completed and $cancelled
Standard worker completion methods

❑ $inithash()
$inithash(vData,iHashType,wHashParameters) initialises the object so it is ready to
hash data using the specified hash type
vData is the data to hash. Either binary or character. A binary value is used
directly. Otherwise, for PBKDF2 the worker converts character data to UTF-8
before generating the hash, and for other hash types, a character parameter is the
pathname of the file containing the data to hash.
iHashType the hash type, a kOW3hash… constant.
wHashParameters A row of parameters that control the hash. For all except
PBKDF2, an empty row(). For PBKDF2, a row with 3 integer columns in the order
saltLength, keyLength, iterations.
Salt length - the length of the random salt (generated by the worker). A good value
for this is 16. Must be 8 to 64 inclusive

What’s New in Omnis Studio 10.0

214

Key length - the length of the hashed key to be generated. A good value is 32. Must
be between 16 and 256 inclusive
Iterations - the number of iterations to perform to generate the hash. A good value
for iterations is at least 100000 - the higher the value, the more secure the hash,
traded off against a longer execution time. Must be between 1 and 256000 inclusive

❑ $initverifyhash()
$initverifyhash(vData,iHashType,vHash) Initialises the object so it is ready to
generate the hash for vData using iHashType and compare it against previously
generated vHash (vHash includes the hash parameters used to generate the
original hash), e.g. you could create a hash using $inithash and store that for future
use. To verify a password or document you call $initverifyhash, with vData as the
password or document to verify, and vHash as the stored hash from your call to
$inithash.

After calling one of the $init… methods, you call $run or $start. The results row passed
to $completed has 3 columns: errorCode, errorInfo and data. The error columns
behave in the same way as the other OW3 workers - note that a negative error code is
a code returned by the mbedTLS library. The data column is only used for $inithash()
and it contains the generated binary hash, provided that no error occurred – you may
want to convert this to base64 before storing it, but note that if you do this you will need
to convert it back to binary before using it to verify data. For $initverifyhash(), the
errorCode is zero if and only if the hash was successfully verified.

The worker has properties as follows:

❑ $errorcode, $errortext, $state and $threadcount
Standard worker properties

FTP Worker Object
Support for SFTP (Secure FTP) has been added to the OW3 FTP Worker Object.
There are some differences in functionality when using SFTP:

1. You use URLs of the form SFTP:// to request an SFTP connection.

2. You must explicitly select a server character set - kUniTypeAuto will cause the

worker to return an error.

3. The append file action is not supported.

4. If you have written code that uses the execute action, be aware that SFTP
servers support different commands to FTP servers.

5. The remaining actions work as expected.

In addition, there are some new properties and methods, primarily related to how a
connection is authenticated. SFTP does not use TLS, so the secure options related to
that only affect FTPS and FTP connections to be upgraded to TLS.

The FTP worker object has some new properties:

❑ $sshenablecompression
If true, SSH compression is enabled for SFTP connections, resulting in a request to
the server to enable compression; the server may ignore the request. Defaults

to false

❑ $sshknownhostsfile
The full pathname of the SSH known hosts file used for SFTP. Defaults to the path
of clientserver/client/ow3_sftp_known_hosts in the Studio tree. Set this to empty to

allow connections (insecurely) to any host

❑ $sshknownhostsaction
A sum of kOW3sshKHAction... constants (default kOW3sshKHActionReject)
specifying what occurs if $sshknownhostsfile is present, and a connection is to be
made to a server not in the file, or a server in the file with a host key mismatch

 JSON Components

 215

❑ $sshauthtypes
A sum of kOW3sshAuthType... constants (default
kOW3sshAuthTypePublicKey+kOW3sshAuthTypePassword+kOW3sshAuthTypeH
ost+kOW3sshAuthTypeAgent) specifying the allowed authentication types when
establishing a connection to the server

The FTP worker object has some new methods:

❑ $getsshoptions()
$getsshoptions([&cServerPublicKeyMD5,&cClientPublicKeyFile,&cPrivKeyFile,&cPr
ivKeyPassword]) gets the options that affect how SSH connections are established

for SFTP

❑ $setsshoptions()
$setsshoptions([cServerPublicKeyMD5='',cClientPublicKeyFile='',cPrivKeyFile='',cP
rivKeyPassword='']) sets the options that affect how SSH connections are
established for SFTP. The parameters are:
cServerPublicKeyMD5:The 128 bit MD5 checksum of the server's public key
(supplied as a 32 character ASCII hex string).If not empty,the SFTP client will reject
the connection to the server unless the MD5 checksums match
cClientPublicKeyFile:The pathname of the client's public key. If empty,the client will
try to compute the public key from the private key
cPrivKeyFile:The pathname of the client's private key file
cPrivKeyPassword:The private key file password

Some or all of the SSH options may be optional, depending on the authentication type
chosen.

JSON Components
JSON Component Editor
The JSON Component editor has been enhanced.

❑ The Build option now adds update markers and gives user opportunity to update
JavaScript if the markers already exist.

❑ The JSON file for a component must be named control.json. The editor will
prompt/warn you if the JSON control file is not named control.json.

❑ Double quote and backslash characters are now escaped when saving all desc and
property initial value items.

❑ When setting the initial value for boolean type properties, values of ‘true’ or ‘kTrue’
are overridden with 1. In addition, there is extra validation for min, max and initial

values.

❑ When setting extconstant and intconstant members for properties, only one can be
selected at a time (both cannot be selected). If intconstant is selected, a constant
name such as kPlain entered into constrangestart or constrangeend is converted to

its ident value.

❑ The editor now prompts you to save if changes have been made on Build and
Reload, as well as when closing the editor.

What’s New in Omnis Studio 10.0

216

Report Programming
Report Working Messages
The Omnis preference $disablereportworkingmessage has been added to allow you to
disable working messages for reports, which you might want to do when printing to a
Print Review window.

❑ $disablereportworkingmessage
If true, the 'Sending report to...' working message is not shown when printing a

report.

This property only applies to reports being printed on the main thread (as reports in
JavaScript client threads do not show a working message). Note that you cannot
cancel the report if you set this property to true. You may also need to use
$modes.$fixedcursor and $modes.$ccursor if you want to display a cursor other than
the busy cursor while printing the report.

Copy from Print Preview
You can now use the tab key to tab through the page list, page and search field in the
Print Preview screen. Therefore, to copy content from the preview screen, you can tab

to the page if necessary, press Cmd+A to Select all and then Cmd+C to copy content.

When the page has the focus, you can use the Escape key to clear the selection.

PDF Destination
The PDF report destination now renders hairlines correctly due to a fix in this version.
The alternative of using the Printer report destination with $macosdesttype set to PDF
uses bitmaps to render background objects, and their appearance in a scaled PDF will
vary depending on the scaling factor and the algorithm used by the PDF viewer to
scale the bitmap.

Libraries
Export Libraries to JSON
You can now export multiple libraries to JSON via the Studio Browser. To do this you
need to select the Libraries node on the Studio Browser and select one or more
libraries in the Library pane. The ‘Export to JSON’ option will appear allowing you to
export the selected library/libraries to the JSON export folder.

Save Window Setup

The Save Window Setup option is now available in the context menu option for JSON
Export/Import and the Errors/Warnings window.

Default Library Internal Name
Prior to this version, file paths on the Windows platform were converted to upper case
when Omnis opened a file, such as a library file. This resulted in the default internal

name for a library being upper case on the Windows platform.

In this version, file names and paths are no longer converted to upper case when
opened on Windows, so the default internal library name will have the case of the
library name. This is consistent with Omnis running on the macOS and Linux platforms.

 Color Themes and Appearance

 217

Color Themes and Appearance
Appearance Subgroups
The colors listed in the appearance.json file, and the associated theme files, have been
grouped into subgroups, to make it easier to locate appearance settings related to
specific areas or controls in Omnis, and include the following subgroups:
 "checkRadio",

 "compareTool",

 "dropList",

 "edit",

 "generalButton",

 "groupBox",

 "header",

 "IDEgeneral",

 "IDEmethodEditor",

 "IDEmethodSyntax",

 "list",

 "menu",

 "pagePreview",

 "pushButton",

 "scrollbar",

 "system",

 "tabPane",

 "toolbar",

 "tooltip",

 "tree"

The subgroups prefixed with IDE refer to colors in the IDE only, such as the Method
Editor, so any changes you make to colors in these groups are only visible in the IDE,
not the Runtime. All other theme subgroups affect colors in the IDE and the Runtime
version of Omnis Studio. When you edit the $appearance preference in the Property
Manager you will see the new subgroups, so to edit colors in the Method Editor syntax
you can open the “IDEmethodSyntax” group.

All new appearance and theme files generated in Omnis Studio 10.0 will contain the
new subgroups. Any theme files created in Studio 8.1.x (without the subgroups) will
continue to work in the new version. You may prefer to use the new appearance and
theme files with the subgroups for all new applications.

Searching Colors & Themes
A search field has been added to the dialogs for the $appearance preference and the
new $keys preference (these dialogs are opened by clicking on the property/preference
in the Property Manager). As you type into the search box, Omnis will highlight any
matching lines in the Property Manager and scroll to the first match. Tabbing from the
search field sets the focus in the grid to the first match.

Studio Browser
Class Browser
File class filter

The keyboard shortcut for the File class filter in the Studio Browser is now Ctrl+Shift+E.
The old shortcut for file classes was Ctrl+Shift+F which now opens the Find and
Replace window (located on the Edit menu).

What’s New in Omnis Studio 10.0

218

Copy Class Name

You can copy the name of a selected class to clipboard by pressing Ctrl-N or via the
Copy Name option on the Class Browser context menu: for multiple selected classes
the names are copied in a list.

iSQL Tool & Query Builder
You can now resize the font in the Interactive SQL (results pane) and Query Builder
windows using the Ctrl+/Ctrl- shortcut keys.

Superclass Methods
A new "Superclass methods..." command has been added to the Studio Browser
context menu for a class to allow you to jump to the methods of the superclass on the
class.

Find and Replace
Find Log
There are a number of enhancements in the Find log window. You can sort the Find log
list by clicking on the header buttons: this is in addition to the current functionality
(Studio 8.1.x) where you can sort the list by either of the first two columns by using the
context menu. The context menu now also has an item to sort the last column.
Keyboard searching of the Find log list now searches column two.

This enhancement means you can locate entries of a particular type more easily in the
Find log, by clicking on the Type header to sort the list, and then typing the type name
to search the list.

Localization
Localizing Built-in Strings
Some new strings have been added to the jOmnisStrings object in the JavaScript
Client which allows you to localize (translate) the strings, if required. The strings
prefixed “ctl_” (except ctl_tree_invmode) have been added in this version and relate to
strings that appear on the File and Tree list controls. The following is a complete list of
strings, including the new ones.

String object String text (English default)

comms_error An error has occurred when communicating with the
server. Press OK to retry the request

comms_timeout The server has not responded. Press OK to
continue waiting

ctl_dgrd_id You cannot use \x01 as a list column name for a list
bound to a data grid

ctl_dgrd_other (1 other)

ctl_dgrd_others (\x01 others)

ctl_file_batchsizeerror Total batch of files is larger than maximum allowed

upload size (\x01)

ctl_file_batchsizetext \x01 of \x01

ctl_file_downloaderror Download error

ctl_file_filesizeerror File size is larger than maximum allowed upload

 Localization

 219

String object String text (English default)

size (\x01)// \x01 //

ctl_file_filesizetext \x01 of \x01

ctl_file_filesuploaded \x01/\x01 files

ctl_file_stopbutton Cancel upload

ctl_file_uploadbutton Upload

ctl_file_uploaderror Upload error

ctl_file_uploadmultipletitle Upload files

ctl_file_uploadstopped Upload stopped

ctl_file_uploadtitle Upload file

ctl_subf_params Control \x01: $parameters cannot be assigned at

runtime

ctl_tree_badgnl Control \x01: Internal error calling get node line for

dynamic tree

ctl_tree_badident Control \x01: You cannot use \x01 as a tree node
ident - tree node idents must be a non-zero positive
integer

ctl_tree_dupident Control \x01: The tree already has a node with ident
\x01 - tree node idents must be unique

ctl_tree_invmode Control \x01: Invalid data mode for tree

disconnected You have been disconnected. Refresh or restart

application to reconnect

error Error

local_storage_unavailable_error Unable to access localStorage (perhaps cookies are
disabled?).//The application will not run.

omn_cli_badobj object $objs.\x01 does not exist

omn_cli_callprivate callprivate cannot call \"\x01\"://Exception: \x01

omn_cli_cgcanassign cannot use $canassign for row section object
\"\x01\" in complex grid because it has exceptions

omn_form_addbadpage Parent page number \x01 not valid for paged pane
\"\x01\

omn_form_addbadparent Parent object \"\x01\" for add control is not a paged
pane

omn_form_addcg Cannot add control to parent object \x01 contained
in complex grid

omn_form_addparent Cannot find parent object \x01 for add control

omn_form_addsrc Cannot find source object \x01 for add control

omn_form_ctrlinst Failed to install the control \x01. Possible missing
class script

omn_form_nofile There is no file with the specified ident (\x01)

omn_form_noinstvar Instance variable does not exist (\x01)

What’s New in Omnis Studio 10.0

220

String object String text (English default)

omn_form_readfileerror Error \x01 occurred when reading the file with ident
\x01

omn_inst_assignpdf Assign PDF: HTML control \"\x01\" not found

omn_inst_badformlist \x01: Invalid formlist

omn_inst_badparent \x01: Invalid parent for subform set

omn_inst_badpn \x01: Paged pane does not have page \x01

omn_inst_badpp \x01: Cannot find the paged pane with name \"\x01\

omn_inst_badservmethcall Cannot make server method call when waiting for a

response from the server

omn_inst_badsfsname \x01: Invalid or empty name for subform set

omn_inst_cliexcep Exception occurred when executing client method://

omn_inst_dupsfsname \x01: A subform set with this name already exists

omn_inst_dupuid Subform set already contains unique id \x01

omn_inst_excep Exception occurred when processing server

response://

omn_inst_excepfile File \"\x01\" Line \x01//

omn_inst_formloaderr Failed to load form data for \x01. Server returned
\x01

omn_inst_formnum Invalid form number. Parameter error \x01

omn_inst_objnum Invalid object number. Parameter error \x01

omn_inst_respbad Unknown response received from server

omn_inst_senderr Failed to send message to server

omn_inst_sfsnotthere \x01: A subform set with name \"\x01\" does not
exist

omn_inst_xmlhttp Failed to initialize XMLHttpRequest

omn_list_badaddcols The argument count for $addcols must be a multiple
of 4

omn_list_badrow Invalid list row

omnis_badhtmlesc Invalid HTML escape

omnis_badstyleesc Invalid style escape sequence

omnis_convbad Error setting \x01: variable type \x01 not supported
by JavaScript client

omnis_convbool Error setting \x01: data cannot be converted to
Boolean

omnis_convchar Error setting \x01: data cannot be converted to
Character

omnis_convdate Error setting \x01: data cannot be converted to Date

omnis_convint Error setting \x01: data cannot be converted to
Integer

 Deploying your Web & Mobile Apps

 221

String object String text (English default)

omnis_convlist Error setting \x01: data cannot be converted to List

omnis_convnum Error setting \x01: data cannot be converted to

Number

omnis_convrow Error setting \x01: data cannot be converted to Row

omnis_escnotsupp Text escape not supported by JavaScript client

switch_off OFF

switch_on ON

Changing System menu items (macOS)
You can change the Hide Omnis and Quit Omnis options in the Omnis Studio runtime
on macOS by adding strings to the Studio String Table (studio.stb). You can now
localize items in the Preferences and Services menus. Note you can find specific
strings in Omnis Studio using the Find strings… option by right-clicking on the string

table name in the Catalog.

Deploying your Web & Mobile Apps
Updating the SCAF
In previous versions you had to quit Omnis and delete the SCAF files in order to force
Omnis to rebuild the SCAF. Now you can do this without having to quit Omnis, by
clicking on the ‘Omnis Studio’ node in the Studio Browser and selecting the ‘Update
Omnis SCAF’ option.

Headless Omnis Server OSAdmin
There is a new member "headlessDatabaseLocation" in the “server” section of the
Omnis Configuration file (config.json) that allows you to specify the location of the
database for the Headless Server admin tool. When populated, the admin tool will look
for / create the SQLite database file in this location, rather than the default.

Server Logging
Folder location

The "folder" item in the “logToFile” section of the config.json file, which specifies the
location of logs for the Omnis App Server, can now be a full path name (which must not
end in a path separator character), and the end folder name will be created if it does
not already exist. In previous versions, you could only specify a folder relative to the
Omnis folder, but now a full path can be used which can be outside the main Omnis
folder. For example:
"folder": "/Users/bd/Sites/logs"

would send the log to the specified folder, while
"folder": "logs"

would still be read as relative to the main Omnis folder (note no starting or ending path
separator).

You must use / as the path separator on macOS and Linux, whereas, you can use / or \
on Windows.

What’s New in Omnis Studio 10.0

222

Log count

The maximum for the “rollingcount” item in the “logToFile” section of the config.json file
has been increased to 1024. The logtofile component uses a new log file every hour (or
daily from 10.1), so the new max value would allow logs to be stored for up to six
weeks, at which point the oldest logs would be deleted.

If there is an error initialising logging, the logtofile component also writes it to standard

output when running on Linux.

Omnis Configuration
Template config.json

The template config.json located in the ‘templates’ folder in the ‘Studio’ folder has been
renamed and is now called ‘configtemplate.json’. The template file contains all possible
configuration settings in Omnis: you can copy sections out of this file and add them to

your copy of the config.json file in the Studio folder to configure specific parts of Omnis.

Editing config.json

You must close Omnis Studio before editing the Omnis Configuration File. If you do not
close Omnis, then any changes you make will be lost.

SQL Programming
SQL Data Type Mapping
The data type mapping for Character columns between SQL table columns and Omnis
Schema class columns has been improved. The definition of Character columns in
Omnis schema classes has changed and now allow lengths from 0xffff to (100000000 -
1) to be stored correctly. In previous versions, the column sublen of 65535 or greater
would have been mapped to 100000000.

This change also means that file classes now support the same lengths.

Omnis Programming
Object Variables
There has been a small but significant change in the way errors are handled when you
open a library that tries to construct an Object variable and the Object class it is based
on does not exist or is in a library that is not open. In this scenario, in this release you
will get a runtime error and execution blocks with the following error:
E100101: Class not found when constructing an object variable

The class name is TESTB.oTestB

Either the class does not exist or it has the wrong type e.g. remote object

In previous versions in this case, you would have received the error “Class not found”,
but code execution would have continued which may have led to further errors in the
application.

Private Methods
Private methods are excluded from the Notation Inspector when showing the methods
of a protected class.

 Web Services

 223

Web Services
ORA Properties and Methods
The $httpresponsecode property no longer returns the informational status codes 100-

199.

Window Classes & Components
There is a new Round Button window class control and some enhancements to a
number of other window class controls. In addition, support for drag and drop for
external files in desktop apps has been extended.

Round Button
The Round Button is a new window class control that provides a graphical & highly
configurable button for your window class forms: it is called RoundButt Control and is
under the External Components tab in the Component Store. You can use the Round
Button to show the progress of a process, or to show individual values in a group of
data points such as percentages. The Round button control uses transparency, so
requires a minimum of Windows 8 or higher.

The Round button has a number of properties which can be set at runtime to indicate
progress.

❑ $centerimage
an optional image which will be clipped inside the circular progress bar, including

the amount specified in $progressgap.

❑ $progressalpha
the alpha value of the progress bar: 0-255 with zero being transparent

❑ $progresscolor

the RGB color of the progress bar

❑ $progressgap
the gap between the inside of the progress bar and the center image

❑ $progressstartangle

the starting angle of the progress bar: 0-359 with zero at the top

❑ $progressvalue
the current value of the progress bar as a percentage: 0-100 with 100 being
progress complete, that is, the progress bar is a complete full circle

❑ $progresswidth
the width of the progress bar in pixels

What’s New in Omnis Studio 10.0

224

As well as these properties to configure the appearance of the control, the control

responds to a standard click which you add event processing to.

Drag and Drop
For Win and macOS

When you drag a file from the system and drop it onto a field that can accept files (its
dropmode is kAcceptFileData) then the file extension or file type is now added as the
third column of the pDragValue list parameter which is passed. For example, this may
be a file extension .txt for a text file, or a Uniform Type Identifier on MacOS such as
com.apple.mail.email for an email.

macOS only

On macOS, support for dragging and dropping from sources other than the file system
has been added. If a third-party application supports the drag pasteboard on macOS,
typically Omnis should be able to receive the data placed on the pasteboard during a
drag and drop operation. The format of this data will vary between applications, but a
couple of examples are discussed here.

Apple Mail

When dropping a single Apple mail onto an Omnis field which accepts system file
information (dropmode is kAcceptFiles) the drag value passed in pDragValue on an
evCanDrop or evDrop event will be a list with a single row. The first column will be a
message URL value and the second column will specify a type of
com.apple.mail.email. The message URL is formatted in the standard internet message
format which contains the message ID. This can be used to identify the message and,
for example, you could use AppleScript to get the body of the message.

Dropping multiple Apple mails results in an empty message URL on the pasteboard
and this is passed in the first column of the drag value as "message:" with a type in the
second column of com.apple.mail.email. If information about multiple emails is
required, the field must accept file data (kAcceptFileData) and process the data
passed as discussed below.

When accepting file data (kAcceptFileData), dropping either a single or multiple mail
message will result in a pDragValue which is a list with a single row. For a single email
the values in the first column will be a message URL containing message information
and for multiple emails it will be an empty message URL. Both will have a type in the
third column of com.apple.mail.email. The data in the second column will be available
when an evDrop event is sent and it will be formatted as an XML property list with
information for each mail message. For an evCanDrag event this will be the length of
the data which will become available. The property list will be an array of dictionaries
with an entry for each email. The key/value pairs in the dictionary will provide the email
account, the id of the email, the mailbox and the subject of the email.

The XML property list can be read into an oXML DOM Document object, e.g.
#lBin - Binary

#lPropertyList - Binary

#lErrorText - Character

#lXML - Object (DOM Document)

On evDrop

..

Calculate lBin as pDragValue.1.2

Do uniconv(kUniTypeUTF32,lBin,kUniTypeUTF8,lPropertyList,kFalse,lErrorText)

Do lXML.$loadbinary(lPropertyList,lErrorText)

..

 Window Classes & Components

 225

Note that the internal format of the dragged data will be UTF32 therefore this needs to
be converted to UTF8 using the uniconv function before it is used in the $loadbinary
call.

Once the property list is represented by a DOM document object then it is possible to
extract the information for each message from the object.

Apple Calendar

A calendar event can be dragged and dropped onto an Omnis field from the Apple
Calendar application. However, the calendar description does not become available
until the evDrop event is sent. As part of the evCanDrop event the pDragValue will
contain a type entry in its first row with an Apple UTI of com.apple.ical.ics. If only
requesting file information (kAcceptFiles), the evDrop drag value will contain a path to a
temporary ICS file in its first column. That file describes the calendar data in the
standard iCalendar format. The second column will show the type as ICS. The data can
then be subsequently loaded from the file on disk and read into an Omnis iCalendar

document object.

When accepting file data (kAcceptFileData), the second column will contain the ICS
formatted data for the event. This can be read into an Omnis iCalendar document
object, for example:
#lBin - Binary

#lCalendarEvent - Character

#lErrorText - Character

#lXML - Object (DOM Document)

On evDrop

..

Calculate lBin as pDragValue.1.2

Do

uniconv(kUniTypeUTF8,lBin,kUniTypeCharacter,lCalendarEvent,kFalse,lErrorText

)

Do lDoc.$initwithdata(lCalendarEvent) Returns #1

..

Note that the internal format of the dragged data will be UTF8 therefore this needs to
be converted to UTF32 using the uniconv() function before it is used in the $initwithdata
call.

Once the calendar event is represented by an Omnis iCalendar object it is possible to
extract information about individual components within the event.

List Control
There is a new color setting "alternatelinecolorplatforms" in the appearance.json file to
allow you to enable alternating colors for list lines. This option is an integer that
indicates the platforms on which the odd and even list row colors are used for relevant
lists with background theme kBGThemeControl. The values are: 0 for no platforms, 1
for macOS (the default), 2 for Windows, 3 for macOS and Windows.

Pushbutton
On macOS from Studio 8.0.x pushbuttons flash when they are clicked; this is the
default behavior for macOS buttons. You can disable this behavior using a new option
in the Omnis confirguration file: under the macOS section in config.json file, set
macOSbuttonNewTextDrawingStyle to false.

What’s New in Omnis Studio 10.0

226

Headed List
You can now detect which column the mouse is over in a headed list. The function
mouseover(kMHorzCell) now returns the column number of the headed list if the
mouse is over the control.

Text Object
The behavior of the $vertcentertext property for single- and multi-line Text objects has
been modified. If true, single-line text (or any text in a kText background object) is
vertically centered in the height of the field. If false, the text is vertically positioned
according to the rules in previous versions of Omnis Studio.

Gif Control
The behavior of the $::scale property for the Gif external component has changed
affecteing how single- and multi-frame gifs are scaled. If $::scale is true, the image is
stretched to fit the control when the gif file is single frame, while the image bitmap is
stretched to its equivalent logical size if the gif file is multi-frame.

Page Pane
The Paged Pane window class control now supports the $alltabcaptions property – this
contains the values of the $pagename property of the pages.

Color Picker
The behavior of the Color Picker control has been improved it is used in an entry field
to enter color values. When the palette opens in RGB mode, the entry field now has the
focus, and selects all of the text. As you type, the color value updates. You can press
return in one of the entry fields to set the color property, or Escape to close the color

picker.

In addition, when the focus is on one of the normal selection arrays, pressing an arrow
key removes the mouse capture, so you can navigate using the arrow keys.

Control Characters
You can now specify that control characters are visible in window class Edit, Multi-line
edit, Combo box, Data grid, and String grid controls (in the Omnis runtime only). A new
library preference $showcontrolcharacters has been added to enable this for the whole
library, or you can set the property for individual controls of those types: you can set
the property in the Property Manager or in your code.

Do $cobj.$showcontrolcharacters.$assign(kTrue)

Do $clib.$prefs.$showcontrolcharacters.$assign(kTrue)

When set to true, control characters are drawn using a suitable symbol, rather than
space which is the default (when the property is false). Control characters are
characters with a value less than Space (with the exception of carriage return for
window controls which use CR as a line delimiter) and Del (0x7f).

Title Bar
On macOS High Sierra or above, end users can now double-click on a window title bar
to Zoom/Minimize the window, but only if the window has Zoom/Minimize buttons.

Mouse Events
A new property called $movebehind has been added to window classes that allows you
to control whether or not to allow mouse move events on fields in windows other than
the top window: the property on the Action tab in the Property Manager.

 Encryption

 227

By default $movebehind is set to kTrue and will allow mouse move events to be
processed in other windows when the window is the top window, e.g. evMouseEnter
and evMouseLeave. Set the property to kFalse to turn off this behavior for the window.

In previous versions, only evMouseEnter and evMouseLeave in a complex grid in a
window that was not top were allowed. To revert to the legacy behavior, add an entry
called "oldMouseMoveBehindBehavior" to the "defaults" group in the config.json file
and set it to true.

Dialog Windows
In previous versions, dialog windows were not drawn with a shadow at Runtime. Omnis
Studio 10 now turns shadow effect on for all windows except docked toolbars, but the

old behavior is configurable.

To turn on the old behavior, add an entry called "oldWindowShadowBehavior" to the
"macOS" group in config.json and set it to true. The legacy behavior disables the
shadow effect for certain configurations of windows, e.g. dialog windows with no title,

windows with no frame and title, and for floating toolbar windows.

$container
$container now returns the window instance for controls (including subwindows) at the
top level: in previous versions this was not available for window class controls, only
JavaScript controls. For example, you can use $cinst.$container() to refer to the outer

window instance when executed in a subform window.

If you have a loop in your code that steps through from a window class control up the
container hierarchy the final container will be the window, so now you will need to test if
the container is a window, e.g. If itemref.$container().$ref.$classtype=kWindow, then

Break to end of loop.

Encryption
Blowfish
There is a new property, $padding, in the Blowfish object to allow you to specify the
type of padding to use when encrypting data.

❑ $padding
A kBlowFishPadding... constant that indicates the type of padding to use when
encrypting or expect when decrypting (default kBlowFishPaddingNone). A value
other than kBlowFishPaddingNone is ignored if you specify a length header.

Valid values of the padding constant are kBlowFishPaddingNone (use or expect no
padding) and kBlowFishPaddingPKCS5 (use or expect PKCS5 padding).

The presence of PKCS5 padding allows the code decrypting the data to correctly
restore its length, without requiring the non-standard length header. This allows the
BlowFish object to be used to encrypt data to be passed to applications other than
Omnis – these applications (assuming they have the key) can decrypt the data and set
its length correctly.

Report Programming
Save PDF on Print Preview
The Page Preview window now has a Save PDF button. You can control whether this
button is present for user reports, using the root device preference

What’s New in Omnis Studio 10.0

228

$reporttoolbarpagepreview: there is a new constant kRBsavePDF that controls whether

the button is present.

Tabs in Reports
There is a new entry in config.json to handle tabs in reports better, so they are
displayed properly on reports, e.g. on the preview thumbnail in page preview. The new
option "replaceTabsInRTFwithSpacesWhenAddingToReport" is in a new group called
"docview". This can be a value from zero to 32 inclusive, the default is 2. Zero means
leave the text unchanged (the behavior prior to this update). 1-32 means replace each
tab character found in the text with 1-32 spaces, when adding the text to a print job.

FileOps
FileOps Error Codes
The error codes that are generated by general file operations in Omnis and by the
FileOps methods (kerr.. and kFileOps..) have been rationalized. The following general
error code constants have been added:

kerrAlreadyExists 1215

kerrDiskRead 1001

kerrDiskWrite 1002

kerrEOFRead 1207

kerrEOFWrite 1208

kerrNotFound 1201

kerrNotOpen 1202

The codes for the following kFileOps... error constants have changed:

kFileOpsPermissionDenied 101203

kFileOpsDiskFull 101206

kFileOpsFileNotOpen 101202

kFileOpsEndOfFile 101207

kFileOpsFileNotFound 101201

kFileOpsFileLocked 101205

kFileOpsAlreadyExists 101215

All other FileOps codes remain unchanged.

Omnis VCS
Conversion
For Studio 10, you must create a new VCS repository due to the changes in the Omnis
language syntax resulting from the new code editor. You are advised to open and
convert your library, then check the conversion logs to look at any possible issues in
your code (any conversion issues are shown in the Find and Replace log, and written
to a log file in the ‘conversion’ folder in the logs folder). Then when you are satisfied
your library and its code are OK, you can check the classes in your library into the new
VCS repository.

 Omnis IDE

 229

Check Out from Find & Replace Log
You can check out a class from the VCS directly from the Find & Replace log window,
assuming the class is not already checked out. You can select a line or multiple lines in
the Find log, right-click on the selection, and select the Check Out option. You will be
prompted to log onto the VCS if required and the Check-out dialog will de displayed
containing the selected classes ready to be checked out.

Omnis IDE
Main menu and Themes
The $alwaysshowmainmenu property now works when not using themes (this property
is only relevant for Windows Vista or 7).

Commands
Working Message
The Working Message command has a new option "Do not auto close". If specified, the
command opens a modal working message dialog that does not automatically close
when the method ends. While the message is open, subsequent working message
calls with this option increment the message and ignore the other parameters.

The new option allows a working message to stay visible while calling one or more
asynchronous methods, e.g. when calling a method in an HTML control via OBrowser,

or when waiting for one or more callbacks from workers.

You must call Close working message to close the message. In a development version,
although the message is modal, Omnis leaves the View menu enabled, so if you do not
call Close working message, so you can open an IDE window, such as the Studio

Browser, which closes the working message.

Functions
Binary functions
URL encoding and padding options have been added to the bintobase64() and
binfrombase64() functions.

bintobase64()

bintobase64(vData[,bURLEncoding=kFalse,bAddPadding=kTrue])

Pass bURLEncoding as kTrue to use the URL-safe form of base64.

Pass bAddPadding as kFalse to exclude the padding from the base64 (the one or two
= characters appended to the end of the encoded data). Typically, this would be

passed as kFalse when using URL-safe encoding.

binfrombase64()

binfrombase64(vData[,bURLEncoding=kFalse,bExpectPadding=kTrue])

Pass bURLEncoding as kTrue to decode the URL-safe form of base64.

Pass bExpectPadding as kFalse to not expect any padding in the base64. Typically,

this would be passed as kFalse when using URL-safe encoding.

byteget()

byteget(binary,byteNumber)

Returns the value (0-255) of the byte at the specified byteNumber in binary. Returns -1
if an error occurs.

What’s New in Omnis Studio 10.0

230

sys()
sys(239)

sys(239) returns true if the Startup method in the library has finished, or false if not.

sys(240)

sys(240) returns a string that identifies the current monitor configuration. You could use
this in your code to branch according to the monitor configuration of end users.

sys(241)

sys(241) returns a copy of the find and replace log list from $findandreplace.

mouseover()
There is a new constant for the mouseover() function, kMComplexGridRow, that

returns the row of a Complex grid the pointer is over.

sleep()
The sleep() function will pause execution for a minimum of the specified number of
milliseconds – the actual delay can be longer in the multi-threaded server if another
stack is executing its time slice when the sleep delay expires. As soon as you execute

sleep() in the multi-threaded server, other waiting stacks can run.

Notation
Find and Replace
Some improvements have been made to $findandreplace notation. Passing #NULL as
the replace string performs a find all rather than a replace all in the class. In addition,
sys(24f1) returns a copy of the find and replace log list.

 Obsolete Commands

 231

Appendix A
Obsolete Commands

Some of the obsolete commands have been removed from this Studio 10.x: these
commands were marked with “OBSOLETE COMMAND” in pre-Studio 10.x versions
and appeared in the ‘Obsolete commands…’ group in the Command list (which is no
longer available in the new Code Editor). The converter in Studio 10.x will comment out
these commands wherever they appear in your code, and a record of the conversion

process is added to a log file in the /logs/conversion folder.

* The Call method OBSOLETE COMMAND is not commented out, but is converted to
Do code method using the same parameter as the old command.

The Translate input/output command was not previously marked as obsolete but it has

been removed from Studio 10.x and will be commented out in your converted code.

Autocommit OBSOLETE COMMAND

Begin SQL script OBSOLETE COMMAND

Build list from select table OBSOLETE

COMMAND

Build list of event recipients OBSOLETE

COMMAND

Call method OBSOLETE COMMAND *
(converted to Do code method)

Cancel event recipient OBSOLETE
COMMAND

Cancel publisher OBSOLETE COMMAND

Cancel subscriber OBSOLETE COMMAND

Close client import file OBSOLETE
COMMAND

Close cursor OBSOLETE COMMAND

Commit current session OBSOLETE
COMMAND

Declare cursor for OBSOLETE COMMAND

Delete client import file OBSOLETE

COMMAND

Describe cursors OBSOLETE COMMAND

Describe database OBSOLETE COMMAND

Describe results OBSOLETE COMMAND

Describe server table OBSOLETE

COMMAND

Describe sessions OBSOLETE COMMAND

Disable automatic publications OBSOLETE
COMMAND

Disable automatic subscriptions OBSOLETE

COMMAND

Disable receiving of Apple events
OBSOLETE COMMAND

Enable automatic publications OBSOLETE
COMMAND

Enable automatic subscriptions OBSOLETE
COMMAND

Enable receiving of Apple events
OBSOLETE COMMAND

End SQL script OBSOLETE COMMAND

Execute SQL script OBSOLETE COMMAND

Fetch current row OBSOLETE COMMAND

Fetch first row OBSOLETE COMMAND

Fetch last row OBSOLETE COMMAND

Fetch next row OBSOLETE COMMAND

Fetch previous row OBSOLETE COMMAND

Get SQL script OBSOLETE COMMAND

Logoff from host OBSOLETE COMMAND

Logon to host OBSOLETE COMMAND

Make file class from server table OBSOLETE

COMMAND

Make schema from server table OBSOLETE
COMMAND

Map fields to host OBSOLETE COMMAND

Open client import file OBSOLETE

COMMAND

Open cursor OBSOLETE COMMAND

Open desk accessory OBSOLETE

COMMAND

Perform SQL OBSOLETE COMMAND

Prepare current cursor OBSOLETE
COMMAND

Prompt for event recipient OBSOLETE

COMMAND

Prompt for word server OBSOLETE

COMMAND

Publish field OBSOLETE COMMAND

Publish now OBSOLETE COMMAND

Quit cursor(s) OBSOLETE COMMAND

Reset cursor(s) OBSOLETE COMMAND

Retrieve rows to file OBSOLETE COMMAND

Appendix A

232

Rollback current session OBSOLETE

COMMAND

Send core event OBSOLETE COMMAND

Send core event with return value
OBSOLETE COMMAND

Send database event OBSOLETE

COMMAND

Send finder event OBSOLETE COMMAND

Send to publisher OBSOLETE COMMAND

Send word services event OBSOLETE
COMMAND

Server specific keyword OBSOLETE
COMMAND

Set batch size OBSOLETE COMMAND

Set character mapping OBSOLETE
COMMAND

Set client import file name OBSOLETE
COMMAND

Set current cursor OBSOLETE COMMAND

Set current session OBSOLETE COMMAND

Set database version OBSOLETE

COMMAND

Set event recipient OBSOLETE COMMAND

Set hostname OBSOLETE COMMAND

Set password OBSOLETE COMMAND

Set publisher options OBSOLETE COMMAND

Set SQL blob preferences OBSOLETE
COMMAND

Set SQL script OBSOLETE COMMAND

Set SQL separators OBSOLETE COMMAND

Set subscriber options OBSOLETE

COMMAND

Set transaction mode OBSOLETE

COMMAND

Set username OBSOLETE COMMAND

SQL: OBSOLETE COMMAND

Start session OBSOLETE COMMAND

Subscribe field OBSOLETE COMMAND

Subscribe now OBSOLETE COMMAND

Translate input/output

Use event recipient OBSOLETE COMMAND

	What’s New in Omnis Studio 10.2
	About This Manual
	Software Support, Compatibility and Conversion Issues
	Serial Numbers and Licensing
	Library and Datafile Conversion
	IMPORTANT: IN ALL CASES, YOU SHOULD MAKE A SECURE BACKUP OF ALL OMNIS LIBRARIES AND OMNIS DATAFILES BEFORE OPENING THEM IN OMNIS STUDIO 10.2.
	Converting 10.0.0 Libraries
	Converting 8.x or earlier Libraries

	Omnis Studio on macOS
	macOS Monterey Support
	Running 10.2 on Big Sur
	Studio 10.2
	Studio 10.1
	Studio 8.1

	Window Refresh on macOS

	Node.js
	Gif Control
	Default Printer (Windows)
	Rebuilding External Components
	macOS External Components

	Context Menus & $active
	Drag and Drop
	IE 11 Support
	Open SSL
	Exporting Double Quotes
	Method Editor: Code Conversion
	Java Legacy Integration
	OWEB Static Methods

	Sybase DAM
	Omnis 7 Events
	First Run Receipts on macOS

	What’s New in Omnis Studio 10.2 Rev 31315
	Apple M1 & macOS Monterey Support
	Toolbars
	sys(8)
	Building macOS Universal Components
	Rebuilding External Components

	The Omnis Environment
	Main Window Resize Message
	Code Editor

	JavaScript Remote Forms
	Layout Breakpoints

	Report Programming
	HTML Icon (Link)

	Functions
	mouseover()
	sys(251)
	sys(252)

	What’s New in Omnis Studio 10.2 Rev 30204
	List Programming
	List Column Calculations

	Window Programming
	Folders in Operating System Drag and Drop
	Using Non-TrueType fonts for Background Objects

	Omnis Data Bridge
	ODB Encryption

	Oracle DAM
	RPC Methods

	What’s New in Omnis Studio 10.2 Rev 29818
	JavaScript Components
	Virtual Keyboard & $negallowed

	JavaScript Remote Forms
	$construct Row

	Omnis Environment
	Code Assistant
	Method Editor
	DB view in Query Builder
	Class Comparison Tool
	Hub Samples

	Libraries
	JSON Export

	Window Components
	Entry Fields

	What’s New in Omnis Studio 10.2 Rev 29538
	JavaScript Components
	Position Assistance
	Hot Control Properties
	Border Radius
	Paged Pane
	Data Grid
	Assigning Colors
	Frozen Columns

	JavaScript Remote Forms
	Timeouts in Remote Tasks

	Omnis Environment
	Find and Replace
	Catalog
	Clipboard Commands for Fields
	Boolean Variable Values
	Tooltips
	Notation Errors
	Trace Log
	Omnis Configuration File
	Omnis Port
	File associations and UAC

	Window Programming
	Toast Messages

	Window Components
	Complex Grids
	Key Events
	Combo box
	Tab Pane
	Window Resizing

	Report Programming
	HTML Link Object
	Report Entry field

	Deployment Tool
	Build Folder

	Omnis Graphs
	High Resolution Charts

	External Components
	WM_MOUSEWHEEL
	#EXTCOMPLIBS file location

	What’s New in Omnis Studio 10.2 Rev 28632
	JavaScript Remote Forms
	Remote Form Design
	JS Themes
	Enter & Esc Keys in Subforms

	JavaScript Components
	JS Edit Control
	JS Button
	Field Styles for Complex Grids
	SVG Icons
	PNG Icon Editor

	Code Editor
	Export List or Row Variables
	Code Folding

	Libraries
	JSON Import Option
	JSON Import Error Messages

	Omnis Environment
	Help System

	Window Components
	OBrowser

	Functions
	split()
	sys(192/292)

	What’s New in Omnis Studio 10.2
	JavaScript Components
	JS Client Themes and Appearance
	JS Themes
	Selecting Colors
	Theme Editor
	Creating a new theme

	Themed Icons
	HTML Template & JS Client theme setting
	Changing the Theme
	The current theme: $construct
	Note for existing users: active color properties

	SVG Icons
	Platform support
	Creating SVG Icons
	Themed Icons
	Using SVG Icons
	Naming and Icon Sets
	Multi-state Icons
	Selecting an SVG icon
	Fixed and Custom Icon Sizes
	Icons for Lists
	Icon Caching
	Multiple Icon sets
	Icon Search order
	Multi-state Icons
	JSON Export-Import
	Icon APIs

	Position Assistance
	Positioning & Aligning Objects
	Distribution
	Alignment
	Positioning for Paged Panes (Container fields)
	Positioning for Complex Grids
	Position Assistance for Reports

	Remote Form Design
	Note to Existing users: Using old design mode
	HTML control

	JS Split Button Control
	Properties
	Events

	JS Edit Control
	Input Masks
	$inputmask
	$inputmaskguide
	$maskvaluevalid
	$processmask

	Horizontal padding
	Vertical padding

	JS Date Picker
	Mode & Popup Style Properties

	JS Data Grid
	Tabbing through cells
	Column header height
	Column header line breaks
	evCellValueChanged & pHorzCell
	pDataColumnName
	Open Filter Method

	JS List Control
	Line Selection

	JS Device Control
	Multiple SMS recipients
	Image Aspect Ratio

	JS Droplist & Combo box
	$extraspace
	$borderstyle

	JS Complex Grid
	Scrollable footer
	Resize Row Animation

	JS Tree Lists
	JS Button
	Border Appearance
	Flat button style
	Disabled appearance

	JS Bar & Pie Charts
	Theme Colors
	Text and Axis Colors

	JS Tab Control, JS Segmented & JS Page Control
	Current Tab, Segment & Page color

	JS Popup Menu
	Line Height

	JS Check Box, Radio Group & Switch
	Event Method Validation
	Tab Order
	Next Tab Object

	Paged Pane
	Control-level Return Methods
	JS Control Variable Names
	Property Values in Client Methods

	JavaScript Forms
	Subforms
	Subform Dialogs
	Subform Dimensions List
	$loadfinished method

	Control Menus
	Form Layout Type
	Remote Tasks: $order
	PDF Printing
	Runtime & Server Logging

	Method Editor
	Code Folding
	Which Commands can be folded?
	Code folding menu
	Selecting Code using the pointer
	Entry Behavior
	Saving the Code Folding State
	JSON Export

	Word Wrapping
	Inline comment wrapping & color

	Method Search
	Showing Built-in Class Methods
	Remote Debugger
	Remote Debug Menu
	Server Port

	Resolved Name Colors
	Appearance Colors
	Panel Popup Menu
	Save Image in Debugger
	To line
	Do and Quit method commands
	Variable tips
	Documentation tab
	Boolean Variables
	Copy Lines
	Select Object
	Sta: command and Square Brackets
	Text: and parenthesis
	Omnis Help
	Help for Built-in Functions
	Auto tab: Table instance data

	MultiProcess Server
	Configuration
	Configuration files

	Libraries
	Classes
	Commands
	New sys() functions
	Process init method ($processinit)
	Database Connections
	Remote Task Methods
	$maxusers
	$sendall()
	Sending messages to Remote task instances using $broadcast()

	Omnis Data Files
	Execution
	Licensing
	Load Sharing
	Remote Debugging
	Debugging Startup
	Debugging the Remote Debug Child
	Making a Client Use the Remote Debug Child

	Using the Same Child Process
	Logging
	Command Line
	--runscript

	External Components

	Window Components
	Token Entry Field
	Using a Token Entry Field
	Properties
	$tokenlist
	$tokenregexp
	$tokencase
	$tokenmenu
	$showtokendeletebutton
	Token Colors
	Events
	evGetTokenList
	Methods
	$gettokens
	$droptokens

	Breadcrumb Control
	Properties
	Events
	Example

	Side Panels
	Properties
	Methods
	Design Mode
	Example

	Check Box
	Event & Control Methods
	$sendevent method

	Complex Grid
	Sliding columns
	Grid Exceptions
	Other Grid enhancements

	List Control
	Queue click: pLineNumber

	OBrowser
	Setting Locale
	Port setting for OBrowser
	Certificate errors

	Edit Controls
	Dictation (macOS)
	Dictation Level and Voice Control

	Tooltips
	Dropdown Lists
	Window Fields
	Tab Strip
	Headed Lists
	HTML Controls
	Focus Field Style
	Picture fields
	Image Interpolation

	Moving Objects into Group boxes
	Checked Menu Items
	Toolbar Spacers (Windows)
	Tray Icon (Windows)

	Window Programming
	Example Apps
	Toast Messages
	$showtoast method
	Toast Message Colors

	Drag and Drop: System Files
	Drop mode
	Drop mode flags
	Drop data limit
	Event Parameters
	File extension (macOS)
	Notes for existing users:

	Menu and Toolbar Fonts (Windows)

	Omnis Libraries
	Starting Omnis
	Opening Initial File As Library error

	Library Parent folder
	Export to JSON & LFs

	Omnis Environment
	Regular Expressions
	Auto Save
	Search Catalog and Interface Manager
	Property Manager
	Showing all properties on one tab
	Background color
	Object Width and Height

	Find and Replace
	Finding Folder
	Selected Class
	Search Selected Methods
	Code Syntax Colors in Find Log

	Configuration File
	Errors in config.json
	Dock Key Events (macOS)

	Save Window Setup Shortcut
	View Menu
	Recent Classes

	SQL Query Builder

	Localization
	Localization Optimization
	Localized String files
	Setting the supported languages
	Compatibility

	Managing the Client Locale

	Report Programming
	Screen Destination
	Report Page Preview
	Screen Report Fields
	Print preferences
	$macosprintstatus

	OW3 Worker Objects
	OAUTH2 Worker Object
	Why use OAUTH2
	Obtaining Authorization
	OAUTH2 Properties
	HTTP and General Properties
	OAUTH2 Standard Methods
	$authorize
	$setauthcode
	$save
	$load
	OAUTH2 Callback Methods
	$tokensrefreshed
	HTTP and General Methods
	HTTP Callback Methods

	HTTP, IMAP, POP3, and SMTP Workers
	HTTP
	IMAP, POP3, SMTP

	OW3 Worker Request Completion
	Multipart Content
	IMAP Worker
	FTP Worker
	HTTP Worker
	Mail Headers

	Web Services
	OpenAPI
	Media types

	$construct parameter row
	RESTful Remote Task Superclass

	Object Oriented Programming
	$cando and Error Handling
	$inherited and $default
	External Objects

	JSON Components
	JSON Control definition

	Commands
	Queue Commands

	Functions
	FileOps.$selectfilesinsystemviewer
	FileOps.$writecharacter()
	FileOps.$deletefile
	FileOps.$createdir()
	rxpos()
	binfrombase64()
	printf()
	mod()
	sys(202)
	sys(241)
	sys(250)

	OJSON
	OJSON.$arrayarraytolist

	JavaScript API
	jOmnis object methods

	Import/Export
	Delimited Import

	Omnis VCS
	VCS Revisions
	VCS revision property

	Server Connections

	Deployment
	Server port
	Printing JPGs on Headless Server
	Headless Server Logging
	Windows Startup Options

	Omnis Datafile Migration
	DML Emulator
	What is DML Emulation?

	External Components

	What’s New in Omnis Studio 10.1
	Code Editor
	Variable Panel
	Viewing Variable Data
	Top Level Variable Panel
	Object Variable Panel
	List or Row Variable Panel
	Item Reference Panel
	Large Character
	Binary
	Picture
	Boolean

	Keyboard Shortcuts
	Modify Class and Modify Methods
	Clear Method Stack
	Go point
	Win & macOS Keyboard Shortcuts

	Method Name Matching
	Command Keywords
	Fonts
	Variable Menu
	Code Conversion
	Print report command
	Text: command

	Find and Replace
	Inherited Methods
	Showing Inherited Methods First
	Editing inherited methods

	List Field References
	Entering Quotes, Braces, and Square Brackets
	Overtyping closing quotes and brackets

	Construct Parameters
	Copying Code
	Unicode Characters
	Character Constants
	Inline Comments
	Read-only Mode
	VCS and Read-only mode

	Toggle Comment
	Rename Variable
	Variable Descriptions
	File Class Field & Library Names
	Obsolete Commands
	Set return value OBSOLETE COMMAND
	Call Method OBSOLETE COMMAND

	SQL Worker Lists
	Using a Worker in a SQL List or Row
	$useworker and $synchronous

	Selecting & Fetching Data
	Inserts, Updates and Deletes
	Smart List Methods
	Completion Row

	JavaScript Remote Forms
	Managing Timeouts in Remote Tasks
	Suspend Properties
	Remote Tasks Events
	Remote forms Events
	Remote Form Template file

	Toast Messages
	Push Connections
	Subform Sets
	Scroll Position
	Maximize Open flag
	Scrollable flag

	Monitor Wizard
	Serverless client methods
	Error Text
	Autocomplete

	JavaScript Components
	Video Control
	Events
	Youtube Playlists

	Data Grid
	Column Justification
	Highlighting Cells
	Initial Row Values
	Row Styles
	Entering Dates Manually

	Toolbar Control
	Selected Line Color
	Side menu & Hover Text Color
	Disabling Items

	Date Picker
	Custom Date Style
	evDateClick event
	Selecting a Date Range
	Localization
	Date picker specific strings
	Generic strings

	Tree List
	Line Border
	Even Row Color

	Complex Grid
	List Control
	Double-click Events
	List Pager

	Edit Controls
	Accented Characters (macOS)
	Auto Correction (macOS)
	Selecting Dates

	Paged Panes
	Switch Control
	TransButton
	Disabled Appearance Property
	Accessibility Properties
	Component Store
	Field List

	Commands
	Line: command
	Syntax
	Description

	Begin text block command

	Window Classes & Components
	OBrowser
	CEF support on macOS
	Cookies

	Object Animation
	Tree List
	Tab Strip
	IDE Animation
	Animation Curves

	Switch Control
	Multibutton Control
	Window Messages
	Window Design Task
	List box, Headed List and Check box lists
	Font Scaling for Fields
	Headed List
	Round Button
	Field Styles
	Background Object Names
	Border Effects for Shape, Text and Labels

	Functions
	delchars()
	sys(123)
	sys(192)
	sys(292)
	systemversion()
	pictformat()
	isclear()
	FileOps.$splitpathname

	Omnis Environment
	Trace Log
	Server Socket Bind Failures

	Update Manifest Files (macOS)
	Query builder
	Appearance Property

	Libraries and Classes
	Library Conversion
	Conversion Messages
	Conversion Log Delimter

	Error Processing
	Default Library name
	$container

	JavaScript Worker
	List/Row Parameter
	Non-JSON content
	Node.JS Error Reporting

	Remote Debugger
	Locked Classes
	Exclude Folders

	Omnis Datafile Migration
	SQLite logon configuration file
	PostgreSQL logon prompt

	List Programming
	List & Row Variable Columns

	Object Classes
	Object Variable Count
	Object instances

	File Classes
	Defining a List from a File class

	Web Services
	Unknown Query String Parameters
	RESTful Output Type
	Object array output type

	Report Programming
	Hyperlinks in PDF Reports
	Report PDF Files & Fonts
	Cross Platform Fonts

	Using style() in Reports
	Printing Background Images to PDF

	Localization
	Overriding the Language
	Studio.stb file

	JSON Control Editor
	JavaScript Variable Prefix

	OJSON
	$listorrowtojson()

	OW3 Worker Objects
	HASH Worker Object
	FTP Worker Object
	HTTP Worker

	Deployment
	Headless Server Log Files
	Auto Update
	Omnis data folder

	Omnis VCS
	Project Revisions
	Exclude Classes
	File system folders
	Prompt for Options and Notes

	External Components
	oXML
	Removing Invalid Characters

	What’s New in Omnis Studio 10.0
	Method Editor
	Tokenization
	Entering Code
	Ctrl-space
	Undo and Redo
	Commands
	Command Filters
	Further Command Filtering
	Editing the Command Filters

	Case and Omitting Spaces
	Tab key
	Construct Commands
	Command Options
	Class Names
	Side by Side Editors
	Panels
	Editor Panel and Errors
	Create Variable Prefixes
	Create Variable Suffixes
	Editor Helper dialog
	Command Syntax Help

	Method Tooltips
	Maximum Number of Methods

	Menus and Keyboard Shortcuts
	View Menu
	Goto Panel

	Debug Menu
	Modify Menu
	Errors Menu
	Find And Replace Menu
	Line Menu
	Commenting / Uncommenting Lines
	Selection Menu
	Word Selection
	Method Editor Context Menu
	Setting Breakpoints & the Breakpoint Context Menu
	Keyboard Shortcuts
	Keyboard Shortcut Configuration

	Language Syntax
	Language Keywords
	Options
	Braces
	Comments
	Entering a new comment
	Commenting and Uncommenting code

	Errors
	Modified Commands
	Obsolete Commands

	Library Conversion
	Inline Comments for JavaScript:, Text: and Sta: commands
	Inline Comments Sta: commands
	Conversion Logs
	JSON generated libraries

	Syntax Coloring
	Syntax Highlighting
	Printing Methods

	JavaScript: Editor
	Spaces & End of Line Characters

	Trace Log
	Error Processing
	Dynamic Methods & Objects

	Accessibility
	Accessibility Properties
	General properties
	Image based controls
	Page panes and Landmarks
	Label controls
	Control text
	Content tips

	Keyboard Accessibility
	Tabbing Order
	Form Example

	JavaScript Remote Forms
	Client Preferences
	Sending Data to the Form construct
	Class Cache Logging
	Form Layout Events
	Layout Breakpoints
	HTML template
	PDF Printing
	Remote Form Padding
	Message Dialogs
	Header Styles
	Javamessage Icons

	Managing Server Timeouts
	Closing Browser Windows

	JavaScript Components
	Toolbar Control
	Properties
	Events
	Defining the $dataname list

	iCalendar External Component
	Working with iCalendar files
	Updating sub-components
	Custom Properties
	Custom Parameters
	Error Properties
	Special Values
	Recur
	Duration
	Period
	Geo

	Methods & Properties
	Static Methods
	$createcomponent()
	$createrow()
	Document Object
	Methods
	$initwithdata()
	$getdata()
	$getcomponent()
	$addrootcomponent()
	$deleterootcomponent()
	$replacerootcomponent()
	Properties
	$componentlist
	Component Object
	Methods
	$getdata()
	$isvalidcalendar()
	$getsubcomponent()
	$addsubcomponent()
	$deletesubcomponent()
	$replacesubcomponent()
	$addproperty()
	$deleteproperty()
	$setparameter()
	$updateproperty()
	$deleteparameter()
	Properties
	$componentlist
	$propertylist
	$typename
	$typenumber

	Edit Control
	Shortcut Keys
	Content Selection
	Horizontal Padding
	Multiline Edit Scrolling

	Segmented Control
	Segment size and spacing
	Hiding Disabled Segments
	Moving Segments in Design mode

	Progress Bar Control
	File Control
	Uploading Multiple Files
	Upload File Type
	Localization

	Pie/Bar Chart
	Data Grid
	Validating data
	Copying data
	evCellValueChanged event
	Fixed Columns
	Color Picker
	Number Columns
	Hiding a column

	Rich Text Editor
	Lists
	Changing Current Line from the Keyboard

	Subforms
	Error text

	Subform Sets
	Title Bar Appearance
	Positioning

	Nav Bar
	HTML Object
	Page Pane
	Alpha Colors for Controls
	Tree List
	Droplists
	Horizontal Padding
	Selected Value

	$active Property
	$enabled property
	Conversion
	Context Menus

	Sizing Objects
	Tooltips and Carriage Return
	Adding Customized JavaScript Components
	JavaScript Component Templates

	Remote Debugger
	Connectivity
	Remote Debug Server
	Remote Debug Server Configuration file
	Debug Port
	Server PFX
	PFX Pass Phrase
	CA
	Request Client Certificate
	Reject Unauthorized
	User Name
	Hashed Password
	Start Remote Debug Server
	Pause Execution At Startup

	Remote Debug Client
	Name
	Server
	Debug Port
	Client Certificate
	User Name
	Password
	Server Connection Logging

	Preparing Code For Remote Debugging
	Library
	Task

	Remote Debugger Interface
	Opening a Session
	Browsing Libraries
	The Remote Debug Window
	Remote Debugger Toolbar
	Back
	Forward
	View
	Find
	Instance
	Stack
	Go, Step In, Step Over, Step Out
	Go Point
	Breakpoints

	Variable Panel
	Keeping the Client in Step with the Server
	Execution
	Execution Contexts
	All in one process
	Errors
	Local Debugger
	Omnis Language
	Remote Debugger In Control

	Remote Objects
	Creating Remote Objects
	Omnis Language
	Library Notation
	Variables

	Creating Instances
	Behavior
	$cwind for remote objects

	Code Generation

	Web and Email Worker Objects
	JavaScript Worker Object
	Enabling Javascript Methods
	Creating the worker
	Properties
	Methods
	Called Methods
	$init()
	$start()
	$cancel()

	$callmethod()
	Callback Methods
	$cancelled
	$workererror
	$methoderror
	$methodreturn

	Example: Adding ZIP support

	POP3 Worker Object
	CRYPTO Worker Object
	HASH Worker Object
	FTP Worker Object

	JSON Components
	JSON Component Editor

	Report Programming
	Report Working Messages
	Copy from Print Preview
	PDF Destination

	Libraries
	Export Libraries to JSON
	Save Window Setup

	Default Library Internal Name

	Color Themes and Appearance
	Appearance Subgroups
	Searching Colors & Themes

	Studio Browser
	Class Browser
	File class filter
	Copy Class Name

	iSQL Tool & Query Builder
	Superclass Methods

	Find and Replace
	Find Log

	Localization
	Localizing Built-in Strings
	Changing System menu items (macOS)

	Deploying your Web & Mobile Apps
	Updating the SCAF
	Headless Omnis Server OSAdmin
	Server Logging
	Folder location
	Log count

	Omnis Configuration
	Template config.json
	Editing config.json

	SQL Programming
	SQL Data Type Mapping

	Omnis Programming
	Object Variables
	Private Methods

	Web Services
	ORA Properties and Methods

	Window Classes & Components
	Round Button
	Drag and Drop
	For Win and macOS
	macOS only
	Apple Mail
	Apple Calendar

	List Control
	Pushbutton
	Headed List
	Text Object
	Gif Control
	Page Pane
	Color Picker
	Control Characters
	Title Bar
	Mouse Events
	Dialog Windows
	$container

	Encryption
	Blowfish

	Report Programming
	Save PDF on Print Preview
	Tabs in Reports

	FileOps
	FileOps Error Codes

	Omnis VCS
	Conversion
	Check Out from Find & Replace Log

	Omnis IDE
	Main menu and Themes

	Commands
	Working Message

	Functions
	Binary functions
	bintobase64()
	binfrombase64()
	byteget()

	sys()
	sys(239)
	sys(240)
	sys(241)

	mouseover()
	sleep()

	Notation
	Find and Replace

	Appendix A
	Obsolete Commands

